mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-11-03 20:38:59 +00:00 
			
		
		
		
	git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@1882 65c4cc65-6c06-0410-ace0-fbb531ad65f3
		
			
				
	
	
		
			464 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			464 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
 ---------------------------------------------------------------------------
 | 
						|
 Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 | 
						|
 All rights reserved.
 | 
						|
 | 
						|
 LICENSE TERMS
 | 
						|
 | 
						|
 The free distribution and use of this software in both source and binary
 | 
						|
 form is allowed (with or without changes) provided that:
 | 
						|
 | 
						|
   1. distributions of this source code include the above copyright
 | 
						|
      notice, this list of conditions and the following disclaimer;
 | 
						|
 | 
						|
   2. distributions in binary form include the above copyright
 | 
						|
      notice, this list of conditions and the following disclaimer
 | 
						|
      in the documentation and/or other associated materials;
 | 
						|
 | 
						|
   3. the copyright holder's name is not used to endorse products
 | 
						|
      built using this software without specific written permission.
 | 
						|
 | 
						|
 ALTERNATIVELY, provided that this notice is retained in full, this product
 | 
						|
 may be distributed under the terms of the GNU General Public License (GPL),
 | 
						|
 in which case the provisions of the GPL apply INSTEAD OF those given above.
 | 
						|
 | 
						|
 DISCLAIMER
 | 
						|
 | 
						|
 This software is provided 'as is' with no explicit or implied warranties
 | 
						|
 in respect of its properties, including, but not limited to, correctness
 | 
						|
 and/or fitness for purpose.
 | 
						|
 ---------------------------------------------------------------------------
 | 
						|
 Issue Date: 26/08/2003
 | 
						|
 | 
						|
 This file contains the code for implementing the key schedule for AES
 | 
						|
 (Rijndael) for block and key sizes of 16, 24, and 32 bytes. See aesopt.h
 | 
						|
 for further details including optimisation.
 | 
						|
*/
 | 
						|
 | 
						|
#include "aesopt.h"
 | 
						|
 | 
						|
#if defined(__cplusplus)
 | 
						|
extern "C"
 | 
						|
{
 | 
						|
#endif
 | 
						|
 | 
						|
/* Initialise the key schedule from the user supplied key. The key
 | 
						|
   length can be specified in bytes, with legal values of 16, 24
 | 
						|
   and 32, or in bits, with legal values of 128, 192 and 256. These
 | 
						|
   values correspond with Nk values of 4, 6 and 8 respectively.
 | 
						|
 | 
						|
   The following macros implement a single cycle in the key
 | 
						|
   schedule generation process. The number of cycles needed
 | 
						|
   for each cx->n_col and nk value is:
 | 
						|
 | 
						|
    nk =             4  5  6  7  8
 | 
						|
    ------------------------------
 | 
						|
    cx->n_col = 4   10  9  8  7  7
 | 
						|
    cx->n_col = 5   14 11 10  9  9
 | 
						|
    cx->n_col = 6   19 15 12 11 11
 | 
						|
    cx->n_col = 7   21 19 16 13 14
 | 
						|
    cx->n_col = 8   29 23 19 17 14
 | 
						|
*/
 | 
						|
 | 
						|
#define ke4(k,i) \
 | 
						|
{   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
 | 
						|
    k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
 | 
						|
}
 | 
						|
#define kel4(k,i) \
 | 
						|
{   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
 | 
						|
    k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
 | 
						|
}
 | 
						|
 | 
						|
#define ke6(k,i) \
 | 
						|
{   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
 | 
						|
    k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
 | 
						|
    k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \
 | 
						|
}
 | 
						|
#define kel6(k,i) \
 | 
						|
{   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
 | 
						|
    k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
 | 
						|
}
 | 
						|
 | 
						|
#define ke8(k,i) \
 | 
						|
{   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
 | 
						|
    k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
 | 
						|
    k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \
 | 
						|
    k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \
 | 
						|
}
 | 
						|
#define kel8(k,i) \
 | 
						|
{   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
 | 
						|
    k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
 | 
						|
}
 | 
						|
 | 
						|
#if defined(ENCRYPTION_KEY_SCHEDULE)
 | 
						|
 | 
						|
#if defined(AES_128) || defined(AES_VAR)
 | 
						|
 | 
						|
aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1])
 | 
						|
{   aes_32t    ss[4];
 | 
						|
 | 
						|
    cx->ks[0] = ss[0] = word_in(in_key, 0);
 | 
						|
    cx->ks[1] = ss[1] = word_in(in_key, 1);
 | 
						|
    cx->ks[2] = ss[2] = word_in(in_key, 2);
 | 
						|
    cx->ks[3] = ss[3] = word_in(in_key, 3);
 | 
						|
 | 
						|
#if ENC_UNROLL == NONE
 | 
						|
    {   aes_32t i;
 | 
						|
 | 
						|
        for(i = 0; i < ((11 * N_COLS - 1) / 4); ++i)
 | 
						|
            ke4(cx->ks, i);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    ke4(cx->ks, 0);  ke4(cx->ks, 1);
 | 
						|
    ke4(cx->ks, 2);  ke4(cx->ks, 3);
 | 
						|
    ke4(cx->ks, 4);  ke4(cx->ks, 5);
 | 
						|
    ke4(cx->ks, 6);  ke4(cx->ks, 7);
 | 
						|
    ke4(cx->ks, 8); kel4(cx->ks, 9);
 | 
						|
#endif
 | 
						|
 | 
						|
    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
 | 
						|
    /* key and must be non-zero for 128 and 192 bits keys   */
 | 
						|
    cx->ks[53] = cx->ks[45] = 0;
 | 
						|
    cx->ks[52] = 10;
 | 
						|
#ifdef AES_ERR_CHK
 | 
						|
    return aes_good;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(AES_192) || defined(AES_VAR)
 | 
						|
 | 
						|
aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1])
 | 
						|
{   aes_32t    ss[6];
 | 
						|
 | 
						|
    cx->ks[0] = ss[0] = word_in(in_key, 0);
 | 
						|
    cx->ks[1] = ss[1] = word_in(in_key, 1);
 | 
						|
    cx->ks[2] = ss[2] = word_in(in_key, 2);
 | 
						|
    cx->ks[3] = ss[3] = word_in(in_key, 3);
 | 
						|
    cx->ks[4] = ss[4] = word_in(in_key, 4);
 | 
						|
    cx->ks[5] = ss[5] = word_in(in_key, 5);
 | 
						|
 | 
						|
#if ENC_UNROLL == NONE
 | 
						|
    {   aes_32t i;
 | 
						|
 | 
						|
        for(i = 0; i < (13 * N_COLS - 1) / 6; ++i)
 | 
						|
            ke6(cx->ks, i);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    ke6(cx->ks, 0);  ke6(cx->ks, 1);
 | 
						|
    ke6(cx->ks, 2);  ke6(cx->ks, 3);
 | 
						|
    ke6(cx->ks, 4);  ke6(cx->ks, 5);
 | 
						|
    ke6(cx->ks, 6); kel6(cx->ks, 7);
 | 
						|
#endif
 | 
						|
 | 
						|
    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
 | 
						|
    /* key and must be non-zero for 128 and 192 bits keys   */
 | 
						|
    cx->ks[53] = cx->ks[45];
 | 
						|
    cx->ks[52] = 12;
 | 
						|
#ifdef AES_ERR_CHK
 | 
						|
    return aes_good;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(AES_256) || defined(AES_VAR)
 | 
						|
 | 
						|
aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1])
 | 
						|
{   aes_32t    ss[8];
 | 
						|
 | 
						|
    cx->ks[0] = ss[0] = word_in(in_key, 0);
 | 
						|
    cx->ks[1] = ss[1] = word_in(in_key, 1);
 | 
						|
    cx->ks[2] = ss[2] = word_in(in_key, 2);
 | 
						|
    cx->ks[3] = ss[3] = word_in(in_key, 3);
 | 
						|
    cx->ks[4] = ss[4] = word_in(in_key, 4);
 | 
						|
    cx->ks[5] = ss[5] = word_in(in_key, 5);
 | 
						|
    cx->ks[6] = ss[6] = word_in(in_key, 6);
 | 
						|
    cx->ks[7] = ss[7] = word_in(in_key, 7);
 | 
						|
 | 
						|
#if ENC_UNROLL == NONE
 | 
						|
    {   aes_32t i;
 | 
						|
 | 
						|
        for(i = 0; i < (15 * N_COLS - 1) / 8; ++i)
 | 
						|
            ke8(cx->ks,  i);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    ke8(cx->ks, 0); ke8(cx->ks, 1);
 | 
						|
    ke8(cx->ks, 2); ke8(cx->ks, 3);
 | 
						|
    ke8(cx->ks, 4); ke8(cx->ks, 5);
 | 
						|
    kel8(cx->ks, 6);
 | 
						|
#endif
 | 
						|
#ifdef AES_ERR_CHK
 | 
						|
    return aes_good;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(AES_VAR)
 | 
						|
 | 
						|
aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1])
 | 
						|
{
 | 
						|
    switch(key_len)
 | 
						|
    {
 | 
						|
#ifdef AES_ERR_CHK
 | 
						|
    case 16: case 128: return aes_encrypt_key128(in_key, cx);
 | 
						|
    case 24: case 192: return aes_encrypt_key192(in_key, cx);
 | 
						|
    case 32: case 256: return aes_encrypt_key256(in_key, cx);
 | 
						|
    default: return aes_error;
 | 
						|
#else
 | 
						|
    case 16: case 128: aes_encrypt_key128(in_key, cx); return;
 | 
						|
    case 24: case 192: aes_encrypt_key192(in_key, cx); return;
 | 
						|
    case 32: case 256: aes_encrypt_key256(in_key, cx); return;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(DECRYPTION_KEY_SCHEDULE)
 | 
						|
 | 
						|
#if DEC_ROUND == NO_TABLES
 | 
						|
#define ff(x)   (x)
 | 
						|
#else
 | 
						|
#define ff(x)   inv_mcol(x)
 | 
						|
#ifdef  dec_imvars
 | 
						|
#define d_vars  dec_imvars
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if 1
 | 
						|
#define kdf4(k,i) \
 | 
						|
{   ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \
 | 
						|
    ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
 | 
						|
    ss[4] ^= k[4*(i)];   k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \
 | 
						|
    ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \
 | 
						|
}
 | 
						|
#define kd4(k,i) \
 | 
						|
{   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
 | 
						|
    k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \
 | 
						|
    k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \
 | 
						|
}
 | 
						|
#define kdl4(k,i) \
 | 
						|
{   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
 | 
						|
    k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \
 | 
						|
    k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \
 | 
						|
}
 | 
						|
#else
 | 
						|
#define kdf4(k,i) \
 | 
						|
{   ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \
 | 
						|
    ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \
 | 
						|
}
 | 
						|
#define kd4(k,i) \
 | 
						|
{   ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
 | 
						|
    ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \
 | 
						|
    ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \
 | 
						|
    ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \
 | 
						|
    ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \
 | 
						|
}
 | 
						|
#define kdl4(k,i) \
 | 
						|
{   ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \
 | 
						|
    ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#define kdf6(k,i) \
 | 
						|
{   ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \
 | 
						|
    ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \
 | 
						|
    ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \
 | 
						|
}
 | 
						|
#define kd6(k,i) \
 | 
						|
{   ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
 | 
						|
    ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \
 | 
						|
    ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \
 | 
						|
    ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \
 | 
						|
    ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \
 | 
						|
    ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \
 | 
						|
    ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \
 | 
						|
}
 | 
						|
#define kdl6(k,i) \
 | 
						|
{   ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \
 | 
						|
    ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \
 | 
						|
}
 | 
						|
 | 
						|
#define kdf8(k,i) \
 | 
						|
{   ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \
 | 
						|
    ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \
 | 
						|
    ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \
 | 
						|
    ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \
 | 
						|
}
 | 
						|
#define kd8(k,i) \
 | 
						|
{   aes_32t g = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
 | 
						|
    ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \
 | 
						|
    ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \
 | 
						|
    ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \
 | 
						|
    ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \
 | 
						|
    g = ls_box(ss[3],0); \
 | 
						|
    ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \
 | 
						|
    ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \
 | 
						|
    ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \
 | 
						|
    ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \
 | 
						|
}
 | 
						|
#define kdl8(k,i) \
 | 
						|
{   ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \
 | 
						|
    ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \
 | 
						|
}
 | 
						|
 | 
						|
#if defined(AES_128) || defined(AES_VAR)
 | 
						|
 | 
						|
aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1])
 | 
						|
{   aes_32t    ss[5];
 | 
						|
#ifdef  d_vars
 | 
						|
        d_vars;
 | 
						|
#endif
 | 
						|
    cx->ks[0] = ss[0] = word_in(in_key, 0);
 | 
						|
    cx->ks[1] = ss[1] = word_in(in_key, 1);
 | 
						|
    cx->ks[2] = ss[2] = word_in(in_key, 2);
 | 
						|
    cx->ks[3] = ss[3] = word_in(in_key, 3);
 | 
						|
 | 
						|
#if DEC_UNROLL == NONE
 | 
						|
    {   aes_32t i;
 | 
						|
 | 
						|
        for(i = 0; i < (11 * N_COLS - 1) / 4; ++i)
 | 
						|
            ke4(cx->ks, i);
 | 
						|
#if !(DEC_ROUND == NO_TABLES)
 | 
						|
        for(i = N_COLS; i < 10 * N_COLS; ++i)
 | 
						|
            cx->ks[i] = inv_mcol(cx->ks[i]);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#else
 | 
						|
    kdf4(cx->ks, 0);  kd4(cx->ks, 1);
 | 
						|
     kd4(cx->ks, 2);  kd4(cx->ks, 3);
 | 
						|
     kd4(cx->ks, 4);  kd4(cx->ks, 5);
 | 
						|
     kd4(cx->ks, 6);  kd4(cx->ks, 7);
 | 
						|
     kd4(cx->ks, 8); kdl4(cx->ks, 9);
 | 
						|
#endif
 | 
						|
 | 
						|
    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
 | 
						|
    /* key and must be non-zero for 128 and 192 bits keys   */
 | 
						|
    cx->ks[53] = cx->ks[45] = 0;
 | 
						|
    cx->ks[52] = 10;
 | 
						|
#ifdef AES_ERR_CHK
 | 
						|
    return aes_good;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(AES_192) || defined(AES_VAR)
 | 
						|
 | 
						|
aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1])
 | 
						|
{   aes_32t    ss[7];
 | 
						|
#ifdef  d_vars
 | 
						|
        d_vars;
 | 
						|
#endif
 | 
						|
    cx->ks[0] = ss[0] = word_in(in_key, 0);
 | 
						|
    cx->ks[1] = ss[1] = word_in(in_key, 1);
 | 
						|
    cx->ks[2] = ss[2] = word_in(in_key, 2);
 | 
						|
    cx->ks[3] = ss[3] = word_in(in_key, 3);
 | 
						|
 | 
						|
#if DEC_UNROLL == NONE
 | 
						|
    cx->ks[4] = ss[4] = word_in(in_key, 4);
 | 
						|
    cx->ks[5] = ss[5] = word_in(in_key, 5);
 | 
						|
    {   aes_32t i;
 | 
						|
 | 
						|
        for(i = 0; i < (13 * N_COLS - 1) / 6; ++i)
 | 
						|
            ke6(cx->ks, i);
 | 
						|
#if !(DEC_ROUND == NO_TABLES)
 | 
						|
        for(i = N_COLS; i < 12 * N_COLS; ++i)
 | 
						|
            cx->ks[i] = inv_mcol(cx->ks[i]);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#else
 | 
						|
    cx->ks[4] = ff(ss[4] = word_in(in_key, 4));
 | 
						|
    cx->ks[5] = ff(ss[5] = word_in(in_key, 5));
 | 
						|
    kdf6(cx->ks, 0); kd6(cx->ks, 1);
 | 
						|
    kd6(cx->ks, 2);  kd6(cx->ks, 3);
 | 
						|
    kd6(cx->ks, 4);  kd6(cx->ks, 5);
 | 
						|
    kd6(cx->ks, 6); kdl6(cx->ks, 7);
 | 
						|
#endif
 | 
						|
 | 
						|
    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
 | 
						|
    /* key and must be non-zero for 128 and 192 bits keys   */
 | 
						|
    cx->ks[53] = cx->ks[45];
 | 
						|
    cx->ks[52] = 12;
 | 
						|
#ifdef AES_ERR_CHK
 | 
						|
    return aes_good;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(AES_256) || defined(AES_VAR)
 | 
						|
 | 
						|
aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1])
 | 
						|
{   aes_32t    ss[8];
 | 
						|
#ifdef  d_vars
 | 
						|
        d_vars;
 | 
						|
#endif
 | 
						|
    cx->ks[0] = ss[0] = word_in(in_key, 0);
 | 
						|
    cx->ks[1] = ss[1] = word_in(in_key, 1);
 | 
						|
    cx->ks[2] = ss[2] = word_in(in_key, 2);
 | 
						|
    cx->ks[3] = ss[3] = word_in(in_key, 3);
 | 
						|
 | 
						|
#if DEC_UNROLL == NONE
 | 
						|
    cx->ks[4] = ss[4] = word_in(in_key, 4);
 | 
						|
    cx->ks[5] = ss[5] = word_in(in_key, 5);
 | 
						|
    cx->ks[6] = ss[6] = word_in(in_key, 6);
 | 
						|
    cx->ks[7] = ss[7] = word_in(in_key, 7);
 | 
						|
    {   aes_32t i;
 | 
						|
 | 
						|
        for(i = 0; i < (15 * N_COLS - 1) / 8; ++i)
 | 
						|
            ke8(cx->ks,  i);
 | 
						|
#if !(DEC_ROUND == NO_TABLES)
 | 
						|
        for(i = N_COLS; i < 14 * N_COLS; ++i)
 | 
						|
            cx->ks[i] = inv_mcol(cx->ks[i]);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#else
 | 
						|
    cx->ks[4] = ff(ss[4] = word_in(in_key, 4));
 | 
						|
    cx->ks[5] = ff(ss[5] = word_in(in_key, 5));
 | 
						|
    cx->ks[6] = ff(ss[6] = word_in(in_key, 6));
 | 
						|
    cx->ks[7] = ff(ss[7] = word_in(in_key, 7));
 | 
						|
    kdf8(cx->ks, 0); kd8(cx->ks, 1);
 | 
						|
    kd8(cx->ks, 2);  kd8(cx->ks, 3);
 | 
						|
    kd8(cx->ks, 4);  kd8(cx->ks, 5);
 | 
						|
    kdl8(cx->ks, 6);
 | 
						|
#endif
 | 
						|
#ifdef AES_ERR_CHK
 | 
						|
    return aes_good;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(AES_VAR)
 | 
						|
 | 
						|
aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1])
 | 
						|
{
 | 
						|
    switch(key_len)
 | 
						|
    {
 | 
						|
#ifdef AES_ERR_CHK
 | 
						|
    case 16: case 128: return aes_decrypt_key128(in_key, cx);
 | 
						|
    case 24: case 192: return aes_decrypt_key192(in_key, cx);
 | 
						|
    case 32: case 256: return aes_decrypt_key256(in_key, cx);
 | 
						|
    default: return aes_error;
 | 
						|
#else
 | 
						|
    case 16: case 128: aes_decrypt_key128(in_key, cx); return;
 | 
						|
    case 24: case 192: aes_decrypt_key192(in_key, cx); return;
 | 
						|
    case 32: case 256: aes_decrypt_key256(in_key, cx); return;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(__cplusplus)
 | 
						|
}
 | 
						|
#endif
 |