mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-10-31 10:47:18 +00:00 
			
		
		
		
	Add AES support
git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@1882 65c4cc65-6c06-0410-ace0-fbb531ad65f3
This commit is contained in:
		
							
								
								
									
										2
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										2
									
								
								Makefile
									
									
									
									
									
								
							| @@ -165,7 +165,7 @@ OBJS=io.o sched.o logger.o frame.o loader.o config.o channel.o \ | ||||
| 	ulaw.o alaw.o callerid.o fskmodem.o image.o app.o \ | ||||
| 	cdr.o tdd.o acl.o rtp.o manager.o asterisk.o ast_expr.o \ | ||||
| 	dsp.o chanvars.o indications.o autoservice.o db.o privacy.o \ | ||||
| 	astmm.o enum.o srv.o dns.o | ||||
| 	astmm.o enum.o srv.o dns.o aescrypt.o aestab.o aeskey.o | ||||
| ifeq (${OSARCH},Darwin) | ||||
| OBJS+=poll.o dlfcn.o | ||||
| ASTLINK=-Wl,-dynamic | ||||
|   | ||||
							
								
								
									
										311
									
								
								aescrypt.c
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										311
									
								
								aescrypt.c
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,311 @@ | ||||
| /* | ||||
|  --------------------------------------------------------------------------- | ||||
|  Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | ||||
|  All rights reserved. | ||||
|  | ||||
|  LICENSE TERMS | ||||
|  | ||||
|  The free distribution and use of this software in both source and binary | ||||
|  form is allowed (with or without changes) provided that: | ||||
|  | ||||
|    1. distributions of this source code include the above copyright | ||||
|       notice, this list of conditions and the following disclaimer; | ||||
|  | ||||
|    2. distributions in binary form include the above copyright | ||||
|       notice, this list of conditions and the following disclaimer | ||||
|       in the documentation and/or other associated materials; | ||||
|  | ||||
|    3. the copyright holder's name is not used to endorse products | ||||
|       built using this software without specific written permission. | ||||
|  | ||||
|  ALTERNATIVELY, provided that this notice is retained in full, this product | ||||
|  may be distributed under the terms of the GNU General Public License (GPL), | ||||
|  in which case the provisions of the GPL apply INSTEAD OF those given above. | ||||
|  | ||||
|  DISCLAIMER | ||||
|  | ||||
|  This software is provided 'as is' with no explicit or implied warranties | ||||
|  in respect of its properties, including, but not limited to, correctness | ||||
|  and/or fitness for purpose. | ||||
|  --------------------------------------------------------------------------- | ||||
|  Issue Date: 26/08/2003 | ||||
|  | ||||
|  This file contains the code for implementing encryption and decryption | ||||
|  for AES (Rijndael) for block and key sizes of 16, 24 and 32 bytes. It | ||||
|  can optionally be replaced by code written in assembler using NASM. For | ||||
|  further details see the file aesopt.h | ||||
| */ | ||||
|  | ||||
| #include "aesopt.h" | ||||
|  | ||||
| #if defined(__cplusplus) | ||||
| extern "C" | ||||
| { | ||||
| #endif | ||||
|  | ||||
| #define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c]) | ||||
| #define so(y,x,c)   word_out(y, c, s(x,c)) | ||||
|  | ||||
| #if defined(ARRAYS) | ||||
| #define locals(y,x)     x[4],y[4] | ||||
| #else | ||||
| #define locals(y,x)     x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3 | ||||
| #endif | ||||
|  | ||||
| #define l_copy(y, x)    s(y,0) = s(x,0); s(y,1) = s(x,1); \ | ||||
|                         s(y,2) = s(x,2); s(y,3) = s(x,3); | ||||
| #define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3) | ||||
| #define state_out(y,x)  so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3) | ||||
| #define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3) | ||||
|  | ||||
| #if defined(ENCRYPTION) && !defined(AES_ASM) | ||||
|  | ||||
| /* Visual C++ .Net v7.1 provides the fastest encryption code when using | ||||
|    Pentium optimiation with small code but this is poor for decryption | ||||
|    so we need to control this with the following VC++ pragmas | ||||
| */ | ||||
|  | ||||
| #if defined(_MSC_VER) | ||||
| #pragma optimize( "s", on ) | ||||
| #endif | ||||
|  | ||||
| /* Given the column (c) of the output state variable, the following | ||||
|    macros give the input state variables which are needed in its | ||||
|    computation for each row (r) of the state. All the alternative | ||||
|    macros give the same end values but expand into different ways | ||||
|    of calculating these values.  In particular the complex macro | ||||
|    used for dynamically variable block sizes is designed to expand | ||||
|    to a compile time constant whenever possible but will expand to | ||||
|    conditional clauses on some branches (I am grateful to Frank | ||||
|    Yellin for this construction) | ||||
| */ | ||||
|  | ||||
| #define fwd_var(x,r,c)\ | ||||
|  ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\ | ||||
|  : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\ | ||||
|  : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\ | ||||
|  :          ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))) | ||||
|  | ||||
| #if defined(FT4_SET) | ||||
| #undef  dec_fmvars | ||||
| #define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c)) | ||||
| #elif defined(FT1_SET) | ||||
| #undef  dec_fmvars | ||||
| #define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c)) | ||||
| #else | ||||
| #define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c))) | ||||
| #endif | ||||
|  | ||||
| #if defined(FL4_SET) | ||||
| #define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c)) | ||||
| #elif defined(FL1_SET) | ||||
| #define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c)) | ||||
| #else | ||||
| #define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c)) | ||||
| #endif | ||||
|  | ||||
| aes_rval aes_encrypt(const void *in_blk, void *out_blk, const aes_encrypt_ctx cx[1]) | ||||
| {   aes_32t         locals(b0, b1); | ||||
|     const aes_32t   *kp = cx->ks; | ||||
| #ifdef dec_fmvars | ||||
|     dec_fmvars; /* declare variables for fwd_mcol() if needed */ | ||||
| #endif | ||||
|  | ||||
|     aes_32t nr = (kp[45] ^ kp[52] ^ kp[53] ? kp[52] : 14); | ||||
|  | ||||
| #ifdef AES_ERR_CHK | ||||
|     if(   (nr != 10 || !(kp[0] | kp[3] | kp[4]))  | ||||
|        && (nr != 12 || !(kp[0] | kp[5] | kp[6])) | ||||
|        && (nr != 14 || !(kp[0] | kp[7] | kp[8])) ) | ||||
|         return aes_error; | ||||
| #endif | ||||
|  | ||||
|     state_in(b0, in_blk, kp); | ||||
|  | ||||
| #if (ENC_UNROLL == FULL) | ||||
|  | ||||
|     switch(nr) | ||||
|     { | ||||
|     case 14: | ||||
|         round(fwd_rnd,  b1, b0, kp + 1 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 2 * N_COLS); | ||||
|         kp += 2 * N_COLS; | ||||
|     case 12: | ||||
|         round(fwd_rnd,  b1, b0, kp + 1 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 2 * N_COLS); | ||||
|         kp += 2 * N_COLS; | ||||
|     case 10: | ||||
|         round(fwd_rnd,  b1, b0, kp + 1 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 2 * N_COLS); | ||||
|         round(fwd_rnd,  b1, b0, kp + 3 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 4 * N_COLS); | ||||
|         round(fwd_rnd,  b1, b0, kp + 5 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 6 * N_COLS); | ||||
|         round(fwd_rnd,  b1, b0, kp + 7 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 8 * N_COLS); | ||||
|         round(fwd_rnd,  b1, b0, kp + 9 * N_COLS); | ||||
|         round(fwd_lrnd, b0, b1, kp +10 * N_COLS); | ||||
|     } | ||||
|  | ||||
| #else | ||||
|  | ||||
| #if (ENC_UNROLL == PARTIAL) | ||||
|     {   aes_32t    rnd; | ||||
|         for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd) | ||||
|         { | ||||
|             kp += N_COLS; | ||||
|             round(fwd_rnd, b1, b0, kp); | ||||
|             kp += N_COLS; | ||||
|             round(fwd_rnd, b0, b1, kp); | ||||
|         } | ||||
|         kp += N_COLS; | ||||
|         round(fwd_rnd,  b1, b0, kp); | ||||
| #else | ||||
|     {   aes_32t    rnd; | ||||
|         for(rnd = 0; rnd < nr - 1; ++rnd) | ||||
|         { | ||||
|             kp += N_COLS; | ||||
|             round(fwd_rnd, b1, b0, kp); | ||||
|             l_copy(b0, b1); | ||||
|         } | ||||
| #endif | ||||
|         kp += N_COLS; | ||||
|         round(fwd_lrnd, b0, b1, kp); | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     state_out(out_blk, b0); | ||||
| #ifdef AES_ERR_CHK | ||||
|     return aes_good; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(DECRYPTION) && !defined(AES_ASM) | ||||
|  | ||||
| /* Visual C++ .Net v7.1 provides the fastest encryption code when using | ||||
|    Pentium optimiation with small code but this is poor for decryption | ||||
|    so we need to control this with the following VC++ pragmas | ||||
| */ | ||||
|  | ||||
| #if defined(_MSC_VER) | ||||
| #pragma optimize( "t", on ) | ||||
| #endif | ||||
|  | ||||
| /* Given the column (c) of the output state variable, the following | ||||
|    macros give the input state variables which are needed in its | ||||
|    computation for each row (r) of the state. All the alternative | ||||
|    macros give the same end values but expand into different ways | ||||
|    of calculating these values.  In particular the complex macro | ||||
|    used for dynamically variable block sizes is designed to expand | ||||
|    to a compile time constant whenever possible but will expand to | ||||
|    conditional clauses on some branches (I am grateful to Frank | ||||
|    Yellin for this construction) | ||||
| */ | ||||
|  | ||||
| #define inv_var(x,r,c)\ | ||||
|  ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\ | ||||
|  : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\ | ||||
|  : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\ | ||||
|  :          ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))) | ||||
|  | ||||
| #if defined(IT4_SET) | ||||
| #undef  dec_imvars | ||||
| #define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c)) | ||||
| #elif defined(IT1_SET) | ||||
| #undef  dec_imvars | ||||
| #define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c)) | ||||
| #else | ||||
| #define inv_rnd(y,x,k,c)    (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))) | ||||
| #endif | ||||
|  | ||||
| #if defined(IL4_SET) | ||||
| #define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c)) | ||||
| #elif defined(IL1_SET) | ||||
| #define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c)) | ||||
| #else | ||||
| #define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)) | ||||
| #endif | ||||
|  | ||||
| aes_rval aes_decrypt(const void *in_blk, void *out_blk, const aes_decrypt_ctx cx[1]) | ||||
| {   aes_32t        locals(b0, b1); | ||||
| #ifdef dec_imvars | ||||
|     dec_imvars; /* declare variables for inv_mcol() if needed */ | ||||
| #endif | ||||
|  | ||||
|     aes_32t nr = (cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] ? cx->ks[52] : 14); | ||||
|     const aes_32t *kp = cx->ks + nr * N_COLS; | ||||
|  | ||||
| #ifdef AES_ERR_CHK | ||||
|     if(   (nr != 10 || !(cx->ks[0] | cx->ks[3] | cx->ks[4]))  | ||||
|        && (nr != 12 || !(cx->ks[0] | cx->ks[5] | cx->ks[6])) | ||||
|        && (nr != 14 || !(cx->ks[0] | cx->ks[7] | cx->ks[8])) ) | ||||
|         return aes_error; | ||||
| #endif | ||||
|  | ||||
|     state_in(b0, in_blk, kp); | ||||
|  | ||||
| #if (DEC_UNROLL == FULL) | ||||
|  | ||||
|     switch(nr) | ||||
|     { | ||||
|     case 14: | ||||
|         round(inv_rnd,  b1, b0, kp -  1 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  2 * N_COLS); | ||||
|         kp -= 2 * N_COLS; | ||||
|     case 12: | ||||
|         round(inv_rnd,  b1, b0, kp -  1 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  2 * N_COLS); | ||||
|         kp -= 2 * N_COLS; | ||||
|     case 10: | ||||
|         round(inv_rnd,  b1, b0, kp -  1 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  2 * N_COLS); | ||||
|         round(inv_rnd,  b1, b0, kp -  3 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  4 * N_COLS); | ||||
|         round(inv_rnd,  b1, b0, kp -  5 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  6 * N_COLS); | ||||
|         round(inv_rnd,  b1, b0, kp -  7 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  8 * N_COLS); | ||||
|         round(inv_rnd,  b1, b0, kp -  9 * N_COLS); | ||||
|         round(inv_lrnd, b0, b1, kp - 10 * N_COLS); | ||||
|     } | ||||
|  | ||||
| #else | ||||
|  | ||||
| #if (DEC_UNROLL == PARTIAL) | ||||
|     {   aes_32t    rnd; | ||||
|         for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd) | ||||
|         { | ||||
|             kp -= N_COLS; | ||||
|             round(inv_rnd, b1, b0, kp); | ||||
|             kp -= N_COLS; | ||||
|             round(inv_rnd, b0, b1, kp); | ||||
|         } | ||||
|         kp -= N_COLS; | ||||
|         round(inv_rnd, b1, b0, kp); | ||||
| #else | ||||
|     {   aes_32t    rnd; | ||||
|         for(rnd = 0; rnd < nr - 1; ++rnd) | ||||
|         { | ||||
|             kp -= N_COLS; | ||||
|             round(inv_rnd, b1, b0, kp); | ||||
|             l_copy(b0, b1); | ||||
|         } | ||||
| #endif | ||||
|         kp -= N_COLS; | ||||
|         round(inv_lrnd, b0, b1, kp); | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     state_out(out_blk, b0); | ||||
| #ifdef AES_ERR_CHK | ||||
|     return aes_good; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(__cplusplus) | ||||
| } | ||||
| #endif | ||||
							
								
								
									
										463
									
								
								aeskey.c
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										463
									
								
								aeskey.c
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,463 @@ | ||||
| /* | ||||
|  --------------------------------------------------------------------------- | ||||
|  Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | ||||
|  All rights reserved. | ||||
|  | ||||
|  LICENSE TERMS | ||||
|  | ||||
|  The free distribution and use of this software in both source and binary | ||||
|  form is allowed (with or without changes) provided that: | ||||
|  | ||||
|    1. distributions of this source code include the above copyright | ||||
|       notice, this list of conditions and the following disclaimer; | ||||
|  | ||||
|    2. distributions in binary form include the above copyright | ||||
|       notice, this list of conditions and the following disclaimer | ||||
|       in the documentation and/or other associated materials; | ||||
|  | ||||
|    3. the copyright holder's name is not used to endorse products | ||||
|       built using this software without specific written permission. | ||||
|  | ||||
|  ALTERNATIVELY, provided that this notice is retained in full, this product | ||||
|  may be distributed under the terms of the GNU General Public License (GPL), | ||||
|  in which case the provisions of the GPL apply INSTEAD OF those given above. | ||||
|  | ||||
|  DISCLAIMER | ||||
|  | ||||
|  This software is provided 'as is' with no explicit or implied warranties | ||||
|  in respect of its properties, including, but not limited to, correctness | ||||
|  and/or fitness for purpose. | ||||
|  --------------------------------------------------------------------------- | ||||
|  Issue Date: 26/08/2003 | ||||
|  | ||||
|  This file contains the code for implementing the key schedule for AES | ||||
|  (Rijndael) for block and key sizes of 16, 24, and 32 bytes. See aesopt.h | ||||
|  for further details including optimisation. | ||||
| */ | ||||
|  | ||||
| #include "aesopt.h" | ||||
|  | ||||
| #if defined(__cplusplus) | ||||
| extern "C" | ||||
| { | ||||
| #endif | ||||
|  | ||||
| /* Initialise the key schedule from the user supplied key. The key | ||||
|    length can be specified in bytes, with legal values of 16, 24 | ||||
|    and 32, or in bits, with legal values of 128, 192 and 256. These | ||||
|    values correspond with Nk values of 4, 6 and 8 respectively. | ||||
|  | ||||
|    The following macros implement a single cycle in the key | ||||
|    schedule generation process. The number of cycles needed | ||||
|    for each cx->n_col and nk value is: | ||||
|  | ||||
|     nk =             4  5  6  7  8 | ||||
|     ------------------------------ | ||||
|     cx->n_col = 4   10  9  8  7  7 | ||||
|     cx->n_col = 5   14 11 10  9  9 | ||||
|     cx->n_col = 6   19 15 12 11 11 | ||||
|     cx->n_col = 7   21 19 16 13 14 | ||||
|     cx->n_col = 8   29 23 19 17 14 | ||||
| */ | ||||
|  | ||||
| #define ke4(k,i) \ | ||||
| {   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ | ||||
|     k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ | ||||
| } | ||||
| #define kel4(k,i) \ | ||||
| {   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ | ||||
|     k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ | ||||
| } | ||||
|  | ||||
| #define ke6(k,i) \ | ||||
| {   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ | ||||
|     k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ | ||||
|     k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \ | ||||
| } | ||||
| #define kel6(k,i) \ | ||||
| {   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ | ||||
|     k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ | ||||
| } | ||||
|  | ||||
| #define ke8(k,i) \ | ||||
| {   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ | ||||
|     k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ | ||||
|     k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \ | ||||
|     k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \ | ||||
| } | ||||
| #define kel8(k,i) \ | ||||
| {   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ | ||||
|     k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ | ||||
| } | ||||
|  | ||||
| #if defined(ENCRYPTION_KEY_SCHEDULE) | ||||
|  | ||||
| #if defined(AES_128) || defined(AES_VAR) | ||||
|  | ||||
| aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]) | ||||
| {   aes_32t    ss[4]; | ||||
|  | ||||
|     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||||
|     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||||
|     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||||
|     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||||
|  | ||||
| #if ENC_UNROLL == NONE | ||||
|     {   aes_32t i; | ||||
|  | ||||
|         for(i = 0; i < ((11 * N_COLS - 1) / 4); ++i) | ||||
|             ke4(cx->ks, i); | ||||
|     } | ||||
| #else | ||||
|     ke4(cx->ks, 0);  ke4(cx->ks, 1); | ||||
|     ke4(cx->ks, 2);  ke4(cx->ks, 3); | ||||
|     ke4(cx->ks, 4);  ke4(cx->ks, 5); | ||||
|     ke4(cx->ks, 6);  ke4(cx->ks, 7); | ||||
|     ke4(cx->ks, 8); kel4(cx->ks, 9); | ||||
| #endif | ||||
|  | ||||
|     /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */ | ||||
|     /* key and must be non-zero for 128 and 192 bits keys   */ | ||||
|     cx->ks[53] = cx->ks[45] = 0; | ||||
|     cx->ks[52] = 10; | ||||
| #ifdef AES_ERR_CHK | ||||
|     return aes_good; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_192) || defined(AES_VAR) | ||||
|  | ||||
| aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]) | ||||
| {   aes_32t    ss[6]; | ||||
|  | ||||
|     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||||
|     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||||
|     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||||
|     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||||
|     cx->ks[4] = ss[4] = word_in(in_key, 4); | ||||
|     cx->ks[5] = ss[5] = word_in(in_key, 5); | ||||
|  | ||||
| #if ENC_UNROLL == NONE | ||||
|     {   aes_32t i; | ||||
|  | ||||
|         for(i = 0; i < (13 * N_COLS - 1) / 6; ++i) | ||||
|             ke6(cx->ks, i); | ||||
|     } | ||||
| #else | ||||
|     ke6(cx->ks, 0);  ke6(cx->ks, 1); | ||||
|     ke6(cx->ks, 2);  ke6(cx->ks, 3); | ||||
|     ke6(cx->ks, 4);  ke6(cx->ks, 5); | ||||
|     ke6(cx->ks, 6); kel6(cx->ks, 7); | ||||
| #endif | ||||
|  | ||||
|     /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */ | ||||
|     /* key and must be non-zero for 128 and 192 bits keys   */ | ||||
|     cx->ks[53] = cx->ks[45]; | ||||
|     cx->ks[52] = 12; | ||||
| #ifdef AES_ERR_CHK | ||||
|     return aes_good; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_256) || defined(AES_VAR) | ||||
|  | ||||
| aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]) | ||||
| {   aes_32t    ss[8]; | ||||
|  | ||||
|     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||||
|     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||||
|     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||||
|     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||||
|     cx->ks[4] = ss[4] = word_in(in_key, 4); | ||||
|     cx->ks[5] = ss[5] = word_in(in_key, 5); | ||||
|     cx->ks[6] = ss[6] = word_in(in_key, 6); | ||||
|     cx->ks[7] = ss[7] = word_in(in_key, 7); | ||||
|  | ||||
| #if ENC_UNROLL == NONE | ||||
|     {   aes_32t i; | ||||
|  | ||||
|         for(i = 0; i < (15 * N_COLS - 1) / 8; ++i) | ||||
|             ke8(cx->ks,  i); | ||||
|     } | ||||
| #else | ||||
|     ke8(cx->ks, 0); ke8(cx->ks, 1); | ||||
|     ke8(cx->ks, 2); ke8(cx->ks, 3); | ||||
|     ke8(cx->ks, 4); ke8(cx->ks, 5); | ||||
|     kel8(cx->ks, 6); | ||||
| #endif | ||||
| #ifdef AES_ERR_CHK | ||||
|     return aes_good; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_VAR) | ||||
|  | ||||
| aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1]) | ||||
| { | ||||
|     switch(key_len) | ||||
|     { | ||||
| #ifdef AES_ERR_CHK | ||||
|     case 16: case 128: return aes_encrypt_key128(in_key, cx); | ||||
|     case 24: case 192: return aes_encrypt_key192(in_key, cx); | ||||
|     case 32: case 256: return aes_encrypt_key256(in_key, cx); | ||||
|     default: return aes_error; | ||||
| #else | ||||
|     case 16: case 128: aes_encrypt_key128(in_key, cx); return; | ||||
|     case 24: case 192: aes_encrypt_key192(in_key, cx); return; | ||||
|     case 32: case 256: aes_encrypt_key256(in_key, cx); return; | ||||
| #endif | ||||
|     } | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(DECRYPTION_KEY_SCHEDULE) | ||||
|  | ||||
| #if DEC_ROUND == NO_TABLES | ||||
| #define ff(x)   (x) | ||||
| #else | ||||
| #define ff(x)   inv_mcol(x) | ||||
| #ifdef  dec_imvars | ||||
| #define d_vars  dec_imvars | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| #if 1 | ||||
| #define kdf4(k,i) \ | ||||
| {   ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \ | ||||
|     ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \ | ||||
|     ss[4] ^= k[4*(i)];   k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \ | ||||
|     ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \ | ||||
| } | ||||
| #define kd4(k,i) \ | ||||
| {   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \ | ||||
|     k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ | ||||
|     k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ | ||||
| } | ||||
| #define kdl4(k,i) \ | ||||
| {   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \ | ||||
|     k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \ | ||||
|     k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \ | ||||
| } | ||||
| #else | ||||
| #define kdf4(k,i) \ | ||||
| {   ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \ | ||||
|     ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \ | ||||
| } | ||||
| #define kd4(k,i) \ | ||||
| {   ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \ | ||||
|     ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \ | ||||
|     ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \ | ||||
|     ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \ | ||||
|     ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \ | ||||
| } | ||||
| #define kdl4(k,i) \ | ||||
| {   ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \ | ||||
|     ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \ | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #define kdf6(k,i) \ | ||||
| {   ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \ | ||||
|     ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \ | ||||
|     ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \ | ||||
| } | ||||
| #define kd6(k,i) \ | ||||
| {   ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \ | ||||
|     ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ | ||||
|     ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ | ||||
|     ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ | ||||
|     ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ | ||||
|     ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ | ||||
|     ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ | ||||
| } | ||||
| #define kdl6(k,i) \ | ||||
| {   ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \ | ||||
|     ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \ | ||||
| } | ||||
|  | ||||
| #define kdf8(k,i) \ | ||||
| {   ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \ | ||||
|     ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \ | ||||
|     ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \ | ||||
|     ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \ | ||||
| } | ||||
| #define kd8(k,i) \ | ||||
| {   aes_32t g = ls_box(ss[7],3) ^ t_use(r,c)[i]; \ | ||||
|     ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \ | ||||
|     ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \ | ||||
|     ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \ | ||||
|     ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \ | ||||
|     g = ls_box(ss[3],0); \ | ||||
|     ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \ | ||||
|     ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \ | ||||
|     ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \ | ||||
|     ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \ | ||||
| } | ||||
| #define kdl8(k,i) \ | ||||
| {   ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \ | ||||
|     ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \ | ||||
| } | ||||
|  | ||||
| #if defined(AES_128) || defined(AES_VAR) | ||||
|  | ||||
| aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]) | ||||
| {   aes_32t    ss[5]; | ||||
| #ifdef  d_vars | ||||
|         d_vars; | ||||
| #endif | ||||
|     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||||
|     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||||
|     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||||
|     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||||
|  | ||||
| #if DEC_UNROLL == NONE | ||||
|     {   aes_32t i; | ||||
|  | ||||
|         for(i = 0; i < (11 * N_COLS - 1) / 4; ++i) | ||||
|             ke4(cx->ks, i); | ||||
| #if !(DEC_ROUND == NO_TABLES) | ||||
|         for(i = N_COLS; i < 10 * N_COLS; ++i) | ||||
|             cx->ks[i] = inv_mcol(cx->ks[i]); | ||||
| #endif | ||||
|     } | ||||
| #else | ||||
|     kdf4(cx->ks, 0);  kd4(cx->ks, 1); | ||||
|      kd4(cx->ks, 2);  kd4(cx->ks, 3); | ||||
|      kd4(cx->ks, 4);  kd4(cx->ks, 5); | ||||
|      kd4(cx->ks, 6);  kd4(cx->ks, 7); | ||||
|      kd4(cx->ks, 8); kdl4(cx->ks, 9); | ||||
| #endif | ||||
|  | ||||
|     /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */ | ||||
|     /* key and must be non-zero for 128 and 192 bits keys   */ | ||||
|     cx->ks[53] = cx->ks[45] = 0; | ||||
|     cx->ks[52] = 10; | ||||
| #ifdef AES_ERR_CHK | ||||
|     return aes_good; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_192) || defined(AES_VAR) | ||||
|  | ||||
| aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]) | ||||
| {   aes_32t    ss[7]; | ||||
| #ifdef  d_vars | ||||
|         d_vars; | ||||
| #endif | ||||
|     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||||
|     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||||
|     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||||
|     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||||
|  | ||||
| #if DEC_UNROLL == NONE | ||||
|     cx->ks[4] = ss[4] = word_in(in_key, 4); | ||||
|     cx->ks[5] = ss[5] = word_in(in_key, 5); | ||||
|     {   aes_32t i; | ||||
|  | ||||
|         for(i = 0; i < (13 * N_COLS - 1) / 6; ++i) | ||||
|             ke6(cx->ks, i); | ||||
| #if !(DEC_ROUND == NO_TABLES) | ||||
|         for(i = N_COLS; i < 12 * N_COLS; ++i) | ||||
|             cx->ks[i] = inv_mcol(cx->ks[i]); | ||||
| #endif | ||||
|     } | ||||
| #else | ||||
|     cx->ks[4] = ff(ss[4] = word_in(in_key, 4)); | ||||
|     cx->ks[5] = ff(ss[5] = word_in(in_key, 5)); | ||||
|     kdf6(cx->ks, 0); kd6(cx->ks, 1); | ||||
|     kd6(cx->ks, 2);  kd6(cx->ks, 3); | ||||
|     kd6(cx->ks, 4);  kd6(cx->ks, 5); | ||||
|     kd6(cx->ks, 6); kdl6(cx->ks, 7); | ||||
| #endif | ||||
|  | ||||
|     /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */ | ||||
|     /* key and must be non-zero for 128 and 192 bits keys   */ | ||||
|     cx->ks[53] = cx->ks[45]; | ||||
|     cx->ks[52] = 12; | ||||
| #ifdef AES_ERR_CHK | ||||
|     return aes_good; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_256) || defined(AES_VAR) | ||||
|  | ||||
| aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]) | ||||
| {   aes_32t    ss[8]; | ||||
| #ifdef  d_vars | ||||
|         d_vars; | ||||
| #endif | ||||
|     cx->ks[0] = ss[0] = word_in(in_key, 0); | ||||
|     cx->ks[1] = ss[1] = word_in(in_key, 1); | ||||
|     cx->ks[2] = ss[2] = word_in(in_key, 2); | ||||
|     cx->ks[3] = ss[3] = word_in(in_key, 3); | ||||
|  | ||||
| #if DEC_UNROLL == NONE | ||||
|     cx->ks[4] = ss[4] = word_in(in_key, 4); | ||||
|     cx->ks[5] = ss[5] = word_in(in_key, 5); | ||||
|     cx->ks[6] = ss[6] = word_in(in_key, 6); | ||||
|     cx->ks[7] = ss[7] = word_in(in_key, 7); | ||||
|     {   aes_32t i; | ||||
|  | ||||
|         for(i = 0; i < (15 * N_COLS - 1) / 8; ++i) | ||||
|             ke8(cx->ks,  i); | ||||
| #if !(DEC_ROUND == NO_TABLES) | ||||
|         for(i = N_COLS; i < 14 * N_COLS; ++i) | ||||
|             cx->ks[i] = inv_mcol(cx->ks[i]); | ||||
| #endif | ||||
|     } | ||||
| #else | ||||
|     cx->ks[4] = ff(ss[4] = word_in(in_key, 4)); | ||||
|     cx->ks[5] = ff(ss[5] = word_in(in_key, 5)); | ||||
|     cx->ks[6] = ff(ss[6] = word_in(in_key, 6)); | ||||
|     cx->ks[7] = ff(ss[7] = word_in(in_key, 7)); | ||||
|     kdf8(cx->ks, 0); kd8(cx->ks, 1); | ||||
|     kd8(cx->ks, 2);  kd8(cx->ks, 3); | ||||
|     kd8(cx->ks, 4);  kd8(cx->ks, 5); | ||||
|     kdl8(cx->ks, 6); | ||||
| #endif | ||||
| #ifdef AES_ERR_CHK | ||||
|     return aes_good; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_VAR) | ||||
|  | ||||
| aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1]) | ||||
| { | ||||
|     switch(key_len) | ||||
|     { | ||||
| #ifdef AES_ERR_CHK | ||||
|     case 16: case 128: return aes_decrypt_key128(in_key, cx); | ||||
|     case 24: case 192: return aes_decrypt_key192(in_key, cx); | ||||
|     case 32: case 256: return aes_decrypt_key256(in_key, cx); | ||||
|     default: return aes_error; | ||||
| #else | ||||
|     case 16: case 128: aes_decrypt_key128(in_key, cx); return; | ||||
|     case 24: case 192: aes_decrypt_key192(in_key, cx); return; | ||||
|     case 32: case 256: aes_decrypt_key256(in_key, cx); return; | ||||
| #endif | ||||
|     } | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(__cplusplus) | ||||
| } | ||||
| #endif | ||||
							
								
								
									
										232
									
								
								aestab.c
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										232
									
								
								aestab.c
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,232 @@ | ||||
| /* | ||||
|  --------------------------------------------------------------------------- | ||||
|  Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | ||||
|  All rights reserved. | ||||
|  | ||||
|  LICENSE TERMS | ||||
|  | ||||
|  The free distribution and use of this software in both source and binary | ||||
|  form is allowed (with or without changes) provided that: | ||||
|  | ||||
|    1. distributions of this source code include the above copyright | ||||
|       notice, this list of conditions and the following disclaimer; | ||||
|  | ||||
|    2. distributions in binary form include the above copyright | ||||
|       notice, this list of conditions and the following disclaimer | ||||
|       in the documentation and/or other associated materials; | ||||
|  | ||||
|    3. the copyright holder's name is not used to endorse products | ||||
|       built using this software without specific written permission. | ||||
|  | ||||
|  ALTERNATIVELY, provided that this notice is retained in full, this product | ||||
|  may be distributed under the terms of the GNU General Public License (GPL), | ||||
|  in which case the provisions of the GPL apply INSTEAD OF those given above. | ||||
|  | ||||
|  DISCLAIMER | ||||
|  | ||||
|  This software is provided 'as is' with no explicit or implied warranties | ||||
|  in respect of its properties, including, but not limited to, correctness | ||||
|  and/or fitness for purpose. | ||||
|  --------------------------------------------------------------------------- | ||||
|  Issue Date: 26/08/2003 | ||||
|  | ||||
| */ | ||||
|  | ||||
| #if defined(__cplusplus) | ||||
| extern "C" | ||||
| { | ||||
| #endif | ||||
|  | ||||
| #define DO_TABLES | ||||
|  | ||||
| #include "aesopt.h" | ||||
|  | ||||
| #if defined(FIXED_TABLES) | ||||
|  | ||||
| /* implemented in case of wrong call for fixed tables */ | ||||
|  | ||||
| void gen_tabs(void) | ||||
| { | ||||
| } | ||||
|  | ||||
| #else   /* dynamic table generation */ | ||||
|  | ||||
| #if !defined(FF_TABLES) | ||||
|  | ||||
| /*  Generate the tables for the dynamic table option | ||||
|  | ||||
|     It will generally be sensible to use tables to compute finite | ||||
|     field multiplies and inverses but where memory is scarse this | ||||
|     code might sometimes be better. But it only has effect during | ||||
|     initialisation so its pretty unimportant in overall terms. | ||||
| */ | ||||
|  | ||||
| /*  return 2 ^ (n - 1) where n is the bit number of the highest bit | ||||
|     set in x with x in the range 1 < x < 0x00000200.   This form is | ||||
|     used so that locals within fi can be bytes rather than words | ||||
| */ | ||||
|  | ||||
| static aes_08t hibit(const aes_32t x) | ||||
| {   aes_08t r = (aes_08t)((x >> 1) | (x >> 2)); | ||||
|  | ||||
|     r |= (r >> 2); | ||||
|     r |= (r >> 4); | ||||
|     return (r + 1) >> 1; | ||||
| } | ||||
|  | ||||
| /* return the inverse of the finite field element x */ | ||||
|  | ||||
| static aes_08t fi(const aes_08t x) | ||||
| {   aes_08t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0; | ||||
|  | ||||
|     if(x < 2) return x; | ||||
|  | ||||
|     for(;;) | ||||
|     { | ||||
|         if(!n1) return v1; | ||||
|  | ||||
|         while(n2 >= n1) | ||||
|         { | ||||
|             n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2); | ||||
|         } | ||||
|  | ||||
|         if(!n2) return v2; | ||||
|  | ||||
|         while(n1 >= n2) | ||||
|         { | ||||
|             n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1); | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| /* The forward and inverse affine transformations used in the S-box */ | ||||
|  | ||||
| #define fwd_affine(x) \ | ||||
|     (w = (aes_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(aes_08t)(w^(w>>8))) | ||||
|  | ||||
| #define inv_affine(x) \ | ||||
|     (w = (aes_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(aes_08t)(w^(w>>8))) | ||||
|  | ||||
| static int init = 0; | ||||
|  | ||||
| void gen_tabs(void) | ||||
| {   aes_32t  i, w; | ||||
|  | ||||
| #if defined(FF_TABLES) | ||||
|  | ||||
|     aes_08t  pow[512], log[256]; | ||||
|  | ||||
|     if(init) return; | ||||
|     /*  log and power tables for GF(2^8) finite field with | ||||
|         WPOLY as modular polynomial - the simplest primitive | ||||
|         root is 0x03, used here to generate the tables | ||||
|     */ | ||||
|  | ||||
|     i = 0; w = 1; | ||||
|     do | ||||
|     { | ||||
|         pow[i] = (aes_08t)w; | ||||
|         pow[i + 255] = (aes_08t)w; | ||||
|         log[w] = (aes_08t)i++; | ||||
|         w ^=  (w << 1) ^ (w & 0x80 ? WPOLY : 0); | ||||
|     } | ||||
|     while (w != 1); | ||||
|  | ||||
| #else | ||||
|     if(init) return; | ||||
| #endif | ||||
|  | ||||
|     for(i = 0, w = 1; i < RC_LENGTH; ++i) | ||||
|     { | ||||
|         t_set(r,c)[i] = bytes2word(w, 0, 0, 0); | ||||
|         w = f2(w); | ||||
|     } | ||||
|  | ||||
|     for(i = 0; i < 256; ++i) | ||||
|     {   aes_08t    b; | ||||
|  | ||||
|         b = fwd_affine(fi((aes_08t)i)); | ||||
|         w = bytes2word(f2(b), b, b, f3(b)); | ||||
|  | ||||
| #ifdef  SBX_SET | ||||
|         t_set(s,box)[i] = b; | ||||
| #endif | ||||
|  | ||||
| #ifdef  FT1_SET                 /* tables for a normal encryption round */ | ||||
|         t_set(f,n)[i] = w; | ||||
| #endif | ||||
| #ifdef  FT4_SET | ||||
|         t_set(f,n)[0][i] = w; | ||||
|         t_set(f,n)[1][i] = upr(w,1); | ||||
|         t_set(f,n)[2][i] = upr(w,2); | ||||
|         t_set(f,n)[3][i] = upr(w,3); | ||||
| #endif | ||||
|         w = bytes2word(b, 0, 0, 0); | ||||
|  | ||||
| #ifdef  FL1_SET                 /* tables for last encryption round (may also   */ | ||||
|         t_set(f,l)[i] = w;        /* be used in the key schedule)                 */ | ||||
| #endif | ||||
| #ifdef  FL4_SET | ||||
|         t_set(f,l)[0][i] = w; | ||||
|         t_set(f,l)[1][i] = upr(w,1); | ||||
|         t_set(f,l)[2][i] = upr(w,2); | ||||
|         t_set(f,l)[3][i] = upr(w,3); | ||||
| #endif | ||||
|  | ||||
| #ifdef  LS1_SET                 /* table for key schedule if t_set(f,l) above is    */ | ||||
|         t_set(l,s)[i] = w;      /* not of the required form                     */ | ||||
| #endif | ||||
| #ifdef  LS4_SET | ||||
|         t_set(l,s)[0][i] = w; | ||||
|         t_set(l,s)[1][i] = upr(w,1); | ||||
|         t_set(l,s)[2][i] = upr(w,2); | ||||
|         t_set(l,s)[3][i] = upr(w,3); | ||||
| #endif | ||||
|  | ||||
|         b = fi(inv_affine((aes_08t)i)); | ||||
|         w = bytes2word(fe(b), f9(b), fd(b), fb(b)); | ||||
|  | ||||
| #ifdef  IM1_SET                 /* tables for the inverse mix column operation  */ | ||||
|         t_set(i,m)[b] = w; | ||||
| #endif | ||||
| #ifdef  IM4_SET | ||||
|         t_set(i,m)[0][b] = w; | ||||
|         t_set(i,m)[1][b] = upr(w,1); | ||||
|         t_set(i,m)[2][b] = upr(w,2); | ||||
|         t_set(i,m)[3][b] = upr(w,3); | ||||
| #endif | ||||
|  | ||||
| #ifdef  ISB_SET | ||||
|         t_set(i,box)[i] = b; | ||||
| #endif | ||||
| #ifdef  IT1_SET                 /* tables for a normal decryption round */ | ||||
|         t_set(i,n)[i] = w; | ||||
| #endif | ||||
| #ifdef  IT4_SET | ||||
|         t_set(i,n)[0][i] = w; | ||||
|         t_set(i,n)[1][i] = upr(w,1); | ||||
|         t_set(i,n)[2][i] = upr(w,2); | ||||
|         t_set(i,n)[3][i] = upr(w,3); | ||||
| #endif | ||||
|         w = bytes2word(b, 0, 0, 0); | ||||
| #ifdef  IL1_SET                 /* tables for last decryption round */ | ||||
|         t_set(i,l)[i] = w; | ||||
| #endif | ||||
| #ifdef  IL4_SET | ||||
|         t_set(i,l)[0][i] = w; | ||||
|         t_set(i,l)[1][i] = upr(w,1); | ||||
|         t_set(i,l)[2][i] = upr(w,2); | ||||
|         t_set(i,l)[3][i] = upr(w,3); | ||||
| #endif | ||||
|     } | ||||
|     init = 1; | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(__cplusplus) | ||||
| } | ||||
| #endif | ||||
|  | ||||
							
								
								
									
										158
									
								
								include/asterisk/aes.h
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										158
									
								
								include/asterisk/aes.h
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,158 @@ | ||||
| /* | ||||
|  --------------------------------------------------------------------------- | ||||
|  Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | ||||
|  All rights reserved. | ||||
|  | ||||
|  LICENSE TERMS | ||||
|  | ||||
|  The free distribution and use of this software in both source and binary | ||||
|  form is allowed (with or without changes) provided that: | ||||
|  | ||||
|    1. distributions of this source code include the above copyright | ||||
|       notice, this list of conditions and the following disclaimer; | ||||
|  | ||||
|    2. distributions in binary form include the above copyright | ||||
|       notice, this list of conditions and the following disclaimer | ||||
|       in the documentation and/or other associated materials; | ||||
|  | ||||
|    3. the copyright holder's name is not used to endorse products | ||||
|       built using this software without specific written permission. | ||||
|  | ||||
|  ALTERNATIVELY, provided that this notice is retained in full, this product | ||||
|  may be distributed under the terms of the GNU General Public License (GPL), | ||||
|  in which case the provisions of the GPL apply INSTEAD OF those given above. | ||||
|  | ||||
|  DISCLAIMER | ||||
|  | ||||
|  This software is provided 'as is' with no explicit or implied warranties | ||||
|  in respect of its properties, including, but not limited to, correctness | ||||
|  and/or fitness for purpose. | ||||
|  --------------------------------------------------------------------------- | ||||
|  Issue Date: 26/08/2003 | ||||
|  | ||||
|  This file contains the definitions required to use AES in C. See aesopt.h | ||||
|  for optimisation details. | ||||
| */ | ||||
|  | ||||
| #ifndef _AES_H | ||||
| #define _AES_H | ||||
|  | ||||
| /*  This include is used to find 8 & 32 bit unsigned integer types  */ | ||||
| #include "limits.h" | ||||
|  | ||||
| #if defined(__cplusplus) | ||||
| extern "C" | ||||
| { | ||||
| #endif | ||||
|  | ||||
| #define AES_128     /* define if AES with 128 bit keys is needed    */ | ||||
| #undef AES_192     /* define if AES with 192 bit keys is needed    */ | ||||
| #undef AES_256     /* define if AES with 256 bit keys is needed    */ | ||||
| #undef AES_VAR     /* define if a variable key size is needed      */ | ||||
|  | ||||
| /* The following must also be set in assembler files if being used  */ | ||||
|  | ||||
| #define AES_ENCRYPT /* if support for encryption is needed          */ | ||||
| #define AES_DECRYPT /* if support for decryption is needed          */ | ||||
| #define AES_ERR_CHK /* for parameter checks & error return codes    */ | ||||
|  | ||||
| #if UCHAR_MAX == 0xff                   /* an unsigned 8 bit type   */ | ||||
|   typedef unsigned char      aes_08t; | ||||
| #else | ||||
| #error Please define aes_08t as an 8-bit unsigned integer type in aes.h | ||||
| #endif | ||||
|  | ||||
| #if UINT_MAX == 0xffffffff              /* an unsigned 32 bit type  */ | ||||
|   typedef   unsigned int     aes_32t; | ||||
| #elif ULONG_MAX == 0xffffffff | ||||
|   typedef   unsigned long    aes_32t; | ||||
| #else | ||||
| #error Please define aes_32t as a 32-bit unsigned integer type in aes.h | ||||
| #endif | ||||
|  | ||||
| #define AES_BLOCK_SIZE  16  /* the AES block size in bytes          */ | ||||
| #define N_COLS           4  /* the number of columns in the state   */ | ||||
|  | ||||
| /* a maximum of 60 32-bit words are needed for the key schedule but */ | ||||
| /* 64 are claimed to allow space at the top for a CBC xor buffer.   */ | ||||
| /* If this is not needed, this value can be reduced to 60. A value  */ | ||||
| /* of 64 may also help in maintaining alignment in some situations  */ | ||||
| #define KS_LENGTH       64 | ||||
|  | ||||
| #ifdef  AES_ERR_CHK | ||||
| #define aes_ret     int | ||||
| #define aes_good    0 | ||||
| #define aes_error  -1 | ||||
| #else | ||||
| #define aes_ret     void | ||||
| #endif | ||||
|  | ||||
| #ifndef AES_DLL                 /* implement normal/DLL functions   */ | ||||
| #define aes_rval    aes_ret | ||||
| #else | ||||
| #define aes_rval    aes_ret __declspec(dllexport) _stdcall | ||||
| #endif | ||||
|  | ||||
| /* This routine must be called before first use if non-static       */ | ||||
| /* tables are being used                                            */ | ||||
|  | ||||
| void gen_tabs(void); | ||||
|  | ||||
| /* The key length (klen) is input in bytes when it is in the range  */ | ||||
| /* 16 <= klen <= 32 or in bits when in the range 128 <= klen <= 256 */ | ||||
|  | ||||
| #ifdef  AES_ENCRYPT | ||||
|  | ||||
| typedef struct   | ||||
| {   aes_32t ks[KS_LENGTH]; | ||||
| } aes_encrypt_ctx; | ||||
|  | ||||
| #if defined(AES_128) || defined(AES_VAR) | ||||
| aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]); | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_192) || defined(AES_VAR) | ||||
| aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]); | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_256) || defined(AES_VAR) | ||||
| aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]); | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_VAR) | ||||
| aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1]); | ||||
| #endif | ||||
|  | ||||
| aes_rval aes_encrypt(const void *in_blk, void *out_blk, const aes_encrypt_ctx cx[1]); | ||||
| #endif | ||||
|  | ||||
| #ifdef AES_DECRYPT | ||||
|  | ||||
| typedef struct   | ||||
| {   aes_32t ks[KS_LENGTH]; | ||||
| } aes_decrypt_ctx; | ||||
|  | ||||
| #if defined(AES_128) || defined(AES_VAR) | ||||
| aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]); | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_192) || defined(AES_VAR) | ||||
| aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]); | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_256) || defined(AES_VAR) | ||||
| aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]); | ||||
| #endif | ||||
|  | ||||
| #if defined(AES_VAR) | ||||
| aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1]); | ||||
| #endif | ||||
|  | ||||
| aes_rval aes_decrypt(const void *in_blk, void *out_blk, const aes_decrypt_ctx cx[1]); | ||||
| #endif | ||||
|  | ||||
| #if defined(__cplusplus) | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
		Reference in New Issue
	
	Block a user