NAME
libcurl-tutorial — libcurl programming tutorial

Objective
This document attempts to describe the general principles and some basic approaches to consider when pro-
gramming with libcurl. The text will focus mainly on the C int&d but might apply fairly well on other
interfaces as well as thesually follov the C one pretty closely.

This document will refer to 'the user’ as the person writing the source code that uses libcurlodldat w
probably be you or someone in your position. What will be generally referred tteegsrogram’ will be

the collected source code that you write that is using libcurl for transfers. The program is outside libcurl
and libcurl is outside of the program.

To get the more details on all options and functions described herein, please refer to theiveespacti
pages.

Building
There are mandifferent ways to build C programs. This chapter will assume a unix-stijtegrocess. If
you use a different build system, you can still read this to get general information that may apply to your
environment as well.

Compiling the Program
Your compiler needs to kmowhere the libcurl headers are located. Therefore you must set your
compilers include path to point to the directory where you installed them. The ’curl-config'[3]
tool can be used to get this information:

$ caurl-config --cflags

Linking the Program with libcurl
When haing compiled the program, you need to link your object files to create a single
executable. Br that to succeed, you need to link with libcurl and possibly also with other libraries
that libcurl itself depends on. Lekthe OpenSSL libraries, buven some standard OS libraries
may be needed on the command linefiglure out which flags to use, once again the 'curl-config’
tool comes to the rescue:

$ curl-config --libs

SSL or Not
libcurl can be bilt and customized in manways. One of the things that varies fromfefiént
libraries and bilds is the support for SSL-based transferg HKTPS and FTPS. If OpenSSlaw
detected properly at build-time, libcurl will be built with SSL suppoatfigure out if an installed
libcurl has been built with SSL support enabled, use 'curl-config'thils:

$ curl-config --feature

And if SSL is supported, the=lword 'SSL will be written to stdout, possibly together with avfe
other features that can be on anidoof different libcurls.

See also the "Features libcurl Provides" further down.

autoconf macro
When you write your configure script to detect libcurl and setufables accordinglywe dfer a
prewritten macro that probably doegeeything you need in this area. See docs/libcurl/libcurl.m4
file - it includes docs on loto use it.

libcurl 9 May 2005 1



Portable Code in a Portable World
The people behind libcurl i@ put a considerable effort to makbcurl work on a large amount of thfent
operating systems and environments.

You program libcurl the same way on all platforms that libcurl runs on. There areenylyew minor con-
siderations that differs. If you just makure to write your code portable enough, you may very well create
yourself a very portable program. libcurl shoutdstop you from that.

Global Preparation
The program must initialize some of the libcurl functionality globdlhat means it should be donaetly
once, no matter o mary times you intend to use the libra®nce for your progrars’ entire life time.
This is done using

curl_global_init()

and it taks one parameter which is a bit pattern that tells libcurl what to initialize. Using
CURL_GLOBAL_ALL will make it initialize all knavn internal sub modules, and might be a goocualef
option. The current tvhits that are specified are:

CURL_GLOBAL_WIN32
which only does anything on Wdows machines. When used on andbws machine,
it' Il make libcurl initialize the win32 socket stuff. Without having that initialized prop-
erly, your program cannot use sockets properu should only do this once for each
application, so if your program already does this or of another library in use does it, you
should not tell libcurl to do this as well.

CURL_GLOBAL_SSL
which only does anything on libcurls compiled andltiSSL-enabled. On these systems,
this will make libcurl initialize OpenSSL properly for this application. This is only
needed to do once for each application so if your program or another library already does
this, this bit should not be needed.

libcurl has a defult protection mechanism that detectsuifl_global _init(3) hasnt been called by the time
curl_easy perform(3) is called and if that is the case, libcurl runs the function itself with a guessed bit pat-
tern. Please note that depending solely on this is not considered nice nor very good.

When the program no longer uses libcurl, it should @all_global_cleanup(3), which is the opposite of
the init call. It will then do the x&rsed operations to cleanup the resourcesuheglobal _init(3) call ini-
tialized.

Repeated calls tourl_global _init(3) andcurl_global _cleanup(3) should be @oided. Thg should only be
called once each.

Features libcurl Provides
It is considered best-practice to determine libcurl features at run-time rather than at build-time (if possible
of course). By callingurl_version_info(3) and checking out the details of the returned struct, your program
can figure out exactly what the currently running libcurl supports.

Handle the Easy libcurl
libcurl first introduced the so called easy inded. All operations in the easy interface are prefixed with

‘curl_easy’.

Recent libcurl versions also offer the multi interface. More about that interface, what it is targeted for and
how to use it is detailed in a separate chapter further down. You still need to understand the easg interf

libcurl 9 May 2005 2



libcurl

first, so please continue reading for better understanding.

To use the easy intaate, you must first create yourself an easy handle. You need one handle for each easy
session you @ant to perform. Basicallyyou should use one handle foregy thread you plan to use for
transferring. You must wer share the same handle in multiple threads.

Get an easy handle with
easyhandle = curl_easy_init();

It returns an easy handle. Using that you proceed to tiestep: setting up your preferred actions. A han-
dle is just a logic entity for the upcoming transfer or series of transfers.

You st properties and options for this handle ugiad_easy setopt(3). They control haw the subsequent
transfer or transfers will be made. Options remain set in the handle untibset@gomething diérent.
Alas, multiple requests using the same handle will use the same options.

Mary of the options you set in libcurl are "strings”, pointers to data terminated with a zero byte. Keep in
mind that when you set strings withrl_easy setopt(3), libcurl will not copy the data. It will merely point

to the data. ¥u MUST male wre that the data remaingadable for libcurl to use until finished or until

you use the same option again to point to something else.

One of the most basic properties to set in the handle is the URL. You set your preferred URL to transfer
with CURLOPT_URL in a manner similar to:

curl_easy_setopt(handle, CURLOPT_URL, "http://domain.com/");

Let's assume for a while that you want to raeethta as the URL identifies a remote resource you want to
get here. Since you write a sort of application that needs this tranasesume that you would kkto et

the data passed to you directly instead of simply getting it passed to stdout. So, you write your own func-
tion that matches this prototype:

size_t write_data(void *buffesze_t size, size_t nmemb, void *userp);

You tell libcurl to pass all data to this function by issuing a function similar to this:
curl_easy_setopt(easyhandle, CURLOPT_WRITEFUNCTION, write_data);

You can control what data your function get in the forth argument by setting another property:

curl_easy_setopt(easyhandle, CURLOPT_WRIAED, &internal_struct);

Using that propertyyou can easily pass local data between your application and the function that gets
invoked by libcurl. libcurl itself wont touch the data you pass WituRLOPT_WRITEDATA.

libcurl offers its own default internal callback that'll takare of the data if you danset the callback with
CURLOPT_WRITEFUNCTION. It will then simply output the reoesd data to stdout. You can ¥ the
default callback write the data to a different file handle by passing a 'FILE *' to a file opened for writing
with the CURLOPT_WRITEDATA option.

Now, we reed to tak a $ep back and he a eep breath. Here'ane of those rare platform-dependent nit-
picks. Did you spot it? On some platforms[2], libcudnit be @le to operate on files opened by the pro-
gram. Thus, if you use the default callback and pass in an open fl€EUWRhOPT WRITEDATA, it will
crash. You should thereforgaid this to malk your program run fine virtuallyverywhere.

9 May 2005 3



(CURLOPT_WRITEDATA was formerly known asCURLOPT_FILE. Both names still wrk and do the
same thing).

If you're using libcurl as a win32 DLL, you MUST use 88RLOPT_WRITEFUNCTION if you setCUR-
LOPT_WRITEDATA - or you will experience crashes.

There are of course mamore options you can set, and we’ll get back tovadéthem laterLet’s instead
continue to the actual transfer:

success = curl_easy_perform(easyhandle);

curl_easy perform(3) will connect to the remote site, do the necessary commands angerbeciransfer
Whenever it receves data, it calls the callback function we previously set. The function may get one byte at
a ime, or it may get mankilobytes at once. libcurl defrs as much as possible as often as possiblar. Y
callback function should return the number of bytes it "took care of". If that is notabesame amount of
bytes that was passed to it, libcurl will abort the operation and return with an error code.

When the transfer is complete, the function returns a return code that informs you if it succeeded in its mis-
sion or not. If a return code igréenough for you, you can use the CURLOPT_EHEBUFFER to point
libcurl to a buffer of yours where it'll store a human readable error message as well.

If you then want to transfer another file, the handle is ready to be usi@d lind you, it is een preferred
that you re-use arxisting handle if you intend to makenother transfedibcurl will then attempt to re-use
the previous connection.

Multi-threading Issues

libcurl

The first basic rule is that you mustver share a libcurl handle (be it easy or multi or wheebetween
multiple threads. Only use one handle in one thread at a time.

libcurl is completely thread safexaept for two issues: signals and SSL/TLS handlers. Signals are used
timeouting name resolves (during DNS lookup) - when built without c-ares support and not on Windows..

If you are accessing HTTPS or FTPS URLs in a multi-threaded maymerare then of course using
OpenSSL/GnuTLS multi-threaded and those libgehtaeir own requirements on this issue. Basicaiu
need to provide one or bwunctions to allev it to function properlyFor all details, see this:
OpenSSL

http://www.openssl.org/docs/crypto/threads.html#DESCRIPTION
GnuTLS
http://www.gnu.org/software/gnutls/manual/htm|_node/Multi_002dthreaded-applications.html
When using multiple threads you should set the CURLOPT_NOALGoption to TRUE for all handles.
Everything will or might work fine except that timeouts are not honored during the DNS lookup - which
you can work around by building libcurl with c-ares support. c-ares is a library théddgs@synchronous
name resolves. Unfortunatelgares does not yet fully support IPv6. On some platforms, libcurl simply

will not function properly multi-threaded unless this option is set.

Also, note that CURLOPT_DNS_USE_GLOBAL_CACHE is not thread-safe.

9 May 2005 4



When It Doesn’t Work

There will alvays be times when the transfer fails for some reason. You migktséaathe wrong libcurl
option or misunderstood what the libcurl option actually does, or the remote server might return non-stan-
dard replies that confuse the library which then confuses your program.

Theres one golden rule when these things occur: set the CURLOPT_VERBOSE option to TRUE. It
cause the library to speout the entire protocol details it sends, some internal info and someetkpis-

tocol data as well (especially when using FTP). If y@uwising HTTPadding the headers in the recs
output to study is also a ek way to get a better understandingywhe server belvas the way it does.
Include headers in the normal body output with CURLOPT_HEADER set TRUE.

Of course there areugs left. . reed to get to kn@ about them to be able to fix them, so we're quite
dependent on yourulg reports! When you do report suspected bugs in libcurl, please include as much
details you possibly can: a protocol dump that CURLOPT_VERBOSE produces, libraigny as much

as possible of your code that uses libcurl, operating system name and version, compiler narscend v
etc.

If CURLOPT_VERBOSE is not enough, you increase thel lef debug data your application rewei by
using the CURLOPT_DEBUGFUNCTION.

Getting some in-depth knowledge about the protoceishird is nger wrong, and if you're trying to do
funny things, you might very well understand libcurl andvhio use it better if you study the appropriate
RFC documents at least briefly.

Upload Data to a Remote Site

libcurl

libcurl tries to keep a protocol independent approach to most transfers, thus uploading to a remote FTP site
is very similar to uploading data to a HTTP server with a PUT request.

Of course, first you either create an easy handle or you re-use one existing one. Then you set the URL to
operate on just li before. This is the remote URL, that weanwill upload.

Since we write an application, we most likely want libcurl to get the upload data by asking us dor it. T
male it do hat, we set the read callback and the custom pointer libcurl will pass to our read callback. The
read callback should 1@ a pototype similar to:

size_t function(char *bufptsize_t size, size_t nitems, void *userp);

Where bufptr is the pointer to affer we fill in with data to upload and size*nitems is the size of tifietb

and therefore also the maximum amount of data we can return to libcurl in this call. The 'userp’ pointer is
the custom pointer we set to point to a struct of ours to pastepdata between the application and the
callback.

curl_easy_setopt(easyhandle, CURLOPT_READFUNCTION, read_function);
curl_easy_setopt(easyhandle, CURLOPT_INFILE, &filedata);

Tell libcurl that we want to upload:

curl_easy_setopt(easyhandle, CURLOPT_UPLOAD, TRUE);

A few potocols won't behave properly when uploads are done withouty gorior knowledge of the

expected file size. So, set the upload file size using the CURLOPT_INFILESIZE_LARGE for wath kno
file sizes lile this[1]:

9 May 2005 5



* in this example, file_size must be an off_t variable */
curl_easy_setopt(easyhandle, CURLOPT_INFILESIZE_LARGE, file_size);

When you callcurl_easy perform(3) this time, itll perform all the necessary operations and when it has
invoked the upload it'll call your supplied callback to get the data to upload. The program should return as
much data as possible imegy invoke, as hat is likely to mak the upload perform as fast as possible. The
callback should return the number of bytes it wrote in thiéeb Returning O will signal the end of the
upload.

Passwords

libcurl

Marny protocols use orwen require that user name and passware provided to be able to download or
upload the data of your choice. libcurl offersesal ways to specify them.

Most protocols support that you specify the name and password in the URL itself. libcurl will detect this
and use them accordinglihis is written lile this:

protocol://user:password@example.com/path/

If you need ay odd letters in your user name or password, you should enter them URL encoded, as %XX
where XX is a two-digit hexadecimal number.

libcurl also provides options to set various passwords. The user name and passwosth @srafeaided in
the URL can instead get set with the CURLOPT_USERPWD option. The argument passed to libcurl
should be a char * to a string in the format "user:password:". In a marm#ridik

curl_easy_setopt(easyhandle, CURLOPT_USERPWD, "myname:thesecret");

Another case where name and password might be needed at times, is for those users who need to authenti-
cate themselves to a proxy yhese. libcurl ofers another option for this, the CURLOPT ®RYUSER-
PWD. It is used quite similar to the CURLOPT_USERPWD optioa this:

curl_easy_setopt(easyhandle, CURLOPTORRUSERPWD, "myname:thesecret");

Theres a bng time unix "standard" way of storing ftp user names and padswnamely in the
$HOME/.netrc file. The file should be madevpié so that only the user may read it (see also the "Security
Considerations" chapter), as it might contain the passw plain text. libcurl has the ability to use this file

to figure out what set of user name and password to use for a particular host. As an extension to the normal
functionality, libcurl also supports this file for non-FTP protocols such as HT@ Pake aurl use this file,

use the CURLOPT_NETRC option:

curl_easy_setopt(easyhandle, CURLOPT_NETRC, TRUE);

And a very basic example ofwesuch a .netrc file may look like:

machine myhost.mydomain.com

login userlogin

password secretword

All these examples ka been cases where the password has been optional, or at least you seutcdlda
and hae libcurl attempt to do its job without it. There are times when the madsisnt optional, like

when you're using an SSL pate key for secure transfers.

To pass the known prate key password to libcurl:

9 May 2005 6



curl_easy_setopt(easyhandle, CURLOPT_SSLKEYPASSW&pdssword");

HTTP Authentication

The previous chapter showedwin st user name and passwd for getting URLSs that require authentica-
tion. When using the HTTP protocol, there are yndifferent ways a client can provide those credentials to
the server and you can control whaaywlibcurl will (attempt to) use. The default HTTP authentication
method is called 'Basic’, which is sending the name and password intele@n the HTTP request,
base64-encoded. This is insecure.

At the time of this writing libcurl can be built to use: Basic, Digest, NTLM, Negotiate, GSS-Negotiate and
SPNEGO. You can tell libcurl which one to use with CURLOPT_HAUPH as in:

curl_easy_setopt(easyhandle, CURLOPT_HAUPH, CURLAUTH_DIGEST);

And when you send authentication to a prgou can also set authentication type the saaebut instead
with CURLOPT_PRXYAUTH:

curl_easy_setopt(easyhandle, CURLOPTORRAUTH, CURLAUTH_NTLM);
Both these options alloyou to set multiple types (by ORing them together), toenilcurl pick the most
secure one out of the types the sefproxy claims to support. This method doewéé@r add a round-trip

since libcurl must first ask the server what it supports:

curl_easy_setopt(easyhandle, CURLOPT_HAUPH,
CURLAUTH_DIGEST|CURLAUTH_BASIC);

For convenience, you can use the 'CURLAUTH_ANY’ define (instead of a list with specific types) which
allows libcurl to use whater method it wants.

When asking for multiple types, libcurl will pick theadable one it considers "best" in its own internal
order of preference.

HTTP POSTing

libcurl

We get maty questions rgarding hav to issue HTTP POSTSs with libcurl the propeaywThis chapter will
thus include examples using both different versions of HTTP POST that libcurl supports.

The first version is the simple POSfie most commonersion, that most HTML pages using the <form>
tag uses. W provide a pointer to the data and tell libcurl to post it all to the remote site:

char *data="name=daniel&project=curl";

curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDS, data);
curl_easy_setopt(easyhandle, CURLOPT_URL, "http://posthere.com/");
curl_easy_perform(easyhandle); /* posisg! */

Simple enough, huh? Since you set the POST options with the CURLOPT_POSTFIELDS, this automati-
cally switches the handle to use POST in the upcoming request.

Ok, so what if you want to post binary data that also requires you to set the Content-Type: header of the
post? Well, binary posts prents libcurl from being able to do strlen() on the data to figure out the size, so
therefore we must tell libcurl the size of the post data. Setting headers in libcurl requests are done in a
generic wayby huilding a list of our own headers and then passing that list to libcurl.

struct curl_slist *headers=NULL,;

9 May 2005 7



libcurl

headers = curl_slist_append(headers, "Content-Type: text/xml");

[* post binary data */
curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDS, binaryptr);

[* set the size of the postfields data */
curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDSIZE, 23);

[* pass our list of custom made headers */
curl_easy_setopt(easyhandle, CURLOPT_HTTPHEADER, headers);

curl_easy_perform(easyhandle); /* posest! */
curl_slist_free_all(headers); /* free the header list */

While the simple examples al® cover the majority of all cases where HTTP POST operations are
required, thg don’t do multi-part formposts. Multi-part formposts were introduced as a better way to post
(possibly large) binary data and was first documented in the RFC1867relTballed multi-part because
they're kuilt by a chain of parts, each being a single unit. Each part has its own name and contents. You can
in fact create and post a multi-part formpost with thygikg libcurl POST support described abdout that

would require that you build a formpost yourself andvjite to libcurl. D make that easierlibcurl pro-
videscurl_formadd(3). Using this function, you add parts to the form. When godbne adding parts, you

post the whole form.

The following example sets twample text parts with plain textual contents, and then a file with binary
contents and upload the whole thing.

struct curl_httppost *post=NULL;
struct curl_httppost *last=NULL;
curl_formadd(&post, &last,
CURLFORM_COPYNAME, "name",
CURLFORM_COPYCONTENTS, "daniel", CURLFORM_END);
curl_formadd(&post, &last,
CURLFORM_COPYNAME, "project",
CURLFORM_COPYCONTENTS, "curl", CURLFORM_END);
curl_formadd(&post, &last,
CURLFORM_COPYNAME, "logotype-image",
CURLFORM_FILECONTENT"curl.png", CURLFORM_END);

/* Set the form info */
curl_easy_setopt(easyhandle, CURLOPT_HTTPP(Q&S1);

curl_easy_perform(easyhandle); /* posest! */

I* free the post data again */
curl_formfree(post);

Multipart formposts are chains of parts using MIME-style separators and headers. It means that each one of
these separate parts get & feeaders set that describe the individual content-type, sizece¢nalble your
application to handicraft this formpostea more, libcurl allows you to supply your own set of custom
headers to such an individual form partuYcan of course supply headers to asynpamts you like, bt

this little example will shar how you set headers to one specific part when you add that to the post handle:

struct curl_slist *headers=NULL,;

9 May 2005 8



headers = curl_slist_append(headers, "Content-Type: text/xml");

curl_formadd(&post, &last,
CURLFORM_COPYNAME, "logotype-image",
CURLFORM_FILECONTENT"curl.xml",
CURLFORM_CONTENTHEADER, headers,
CURLFORM_END);

curl_easy_perform(easyhandle); /* posest! */

curl_formfree(post); /* free post */
curl_slist_free_all(post); /* free custom header list */

Since all options on an easyhandle are "gtickhey remain the same until changeder if you do call
curl_easy perform(3), you may need to tell curl to go back to a plain GET request if you intend to do such

a me as your nd request. You force an easyhandle to back to GET by using the CURLOPT_HTTPGET
option:

curl_easy_setopt(easyhandle, CURLOPT_HTTPGHRUE);

Just setting CURLOPT_POSTFIELDS to ™ or NULL will *not* stop libcurl from doing a PASWill
just male it POST without ag data to send!

Showing Progress

For historical and traditional reasons, libcurl hasudltbn progress meter that can be switched on and then
makes it presents a progress meter in your terminal.

Switch on the progress meter, logddly enough, set CURLOPT_NOPROGRESS to FALSE. This option is
set to TRUE by default.

For most applications heever, the built-in progress meter is useless and what instead is interesting is the

ability to specify a progress callback. The function pointer you pass to libcurl will then be calledyon irre
lar intervals with information about the current transfer.

Set the progress callback by using CURLOPTOBRESSFUNCTION. And pass a pointer to a function
that matches this prototype:

int progress_ callback(void *clientp,
double dltotal,
double diney,
double ultotal,
double ulnow);

If any of the input arguments is unknown, a 0 will be passed. The first argument, the ’clientp’ is the pointer
you pass to libcurl with CURLOPT_PROGRESAI. libcurl wont touch it.

libcurl with C++

Theres hasically only one thing to keep in mind when using C++ instead of C when interfacing libcurl:
The callbacks CANND be ron-static class member functions
Example C++ code:

class AClass {

9 May 2005 9



static size_t write_data(void *p8ize_t size, size_t nmemb,
void *ourpointer)
{
/* do what you want with the data */
}
}

Proxies

libcurl

What "proxy" means according to Merriam-Webster: "a person authorized to act for anatresbli'the
ageng, function, or office of a deputy who acts as a substitute for another".

Proxies are exceedingly common these days. Companies often only offer Internet accessyeesmplo
through their HTTP proxies. Network clients or user-agents ask the proxy for documents, the proxy does
the actual request and then it returns them.

libcurl has full support for HTTP proxies, so when eegiURL is wanted, libcurl will ask the proxy for it
instead of trying to connect to the actual host identified in the URL.

The fact that the proxy is a HTTP proxy puts certain restrictions on what can actually happen. A requested
URL that might not be a HTTP URL will be still be passed to the HTTP proxy teedélck to libcurl.

This happens transparentind an application may not need to #nd say "may"”, because at times it is

very important to understand that all operatiomer@ HTTP proxy is using the HTTP protocol. Fotam-

ple, you cart'invoke your own custom FTP commands e proper FTP directory listings.

Proxy Options
To tell libcurl to use a proxy at awgn port number:
curl_easy_setopt(easyhandle, CURLOPTORR, "proxy-host.com:8080");

Some proxies require user authentication beforevailpa request, and you pass that information
similar to this:

curl_easy_setopt(easyhandle, CURLOPTORRUSERPWD, "user:password");

If you want to, you can specify the host name only in the CURLOPDXRPoption, and set the
port number separately with CURLOPT GRYPORT.

Environment Variables

libcurl automatically checks and uses a set of environment variablesvovkmat proxies to use

for certain protocols. The names of the variables are following an ancient de facto standard and are
built up as "[protocol]_proxy" (note the lower casing). Which makes the variable HBll&wing

the same rule, theaviable named 'ftp_proxy’ is checked for FTP URLs. Again, the proxies are
always HTTP proxies, the different names of the variables simply allows different HTTP proxies
to be used.

The proxy environment variable contents should be in the format "[protocol://[[user:pass-
word@]machine[:port]". Where the protocol:// part is simply ignored if present (so http://proxy
and bluerk://proxy will do the same) and the optional port number specifies on which port the
proxy operates on the host. If not specified, the internaluttgort number will be used and that

is most likely *not* the one you would kkit to ke.

9 May 2005 10



libcurl

There are tw gecial environment variables. 'all_proxy’ is what sets proxy fgr @RL in case

the protocol specificariable vasnt set, and 'no_proxy’ defines a list of hosts that should not use
a proxy even though a variable may say so. If 'no_proxy’ is a plain asterisk ("*") it matches all
hosts.

SSL and Proxies

SSL is for secure point-to-point connections. Thislwes strong encryption and similar things,
which efectively makes it impossible for a proxy to operate as a "man in between" which the
proxy’'s task is, as previously discussed. Instead, the only wayvi® $l work over a HTTP

proxy is to ask the proxy to tunnel trougresything without being able to check or fiddle with the
traffic.

Opening an SSL connectioives a HTTP proxy is therefor a matter of asking the proxy for a
straight connection to the tpet host on a specified port. This is made with the HTTP request
CONNECT ("please mr proxyconnect me to that remote host").

Because of the nature of this operation, where the proxy has no idea what kind of data that is
passed in and out through this tunnel, this breaks some of the wesghf@ntages that come from

using a proxysuch as cachingMany organizations preent this kind of tunneling to other desti-
nation port numbers than 443 (which is the default HTTPS port number).

Tunneling Through Proxy

As explained abee, tunneling is required for SSL toark and often een restricted to the opera-
tion intended for SSL; HTTPS.

This is howser not the only time proxy-tunneling might offer benefits to you or your application.

As tunneling opens a direct connection from your application to the remote machine, it suddenly
also re-introduces the ability to do non-HTTP operatiores @ HTTP proxy You can in fact use
things such as FTP upload or FTP custom commands this way.

Again, this is often preented by the administrators of proxies and is rarely allowed.

Tell libcurl to use proxy tunneling I this:

curl_easy_setopt(easyhandle, CURLOPT_HTTORRTUNNEL, TRUE);

In fact, there might\en be imes when you want to do plain HTTP operations using a tunmel lik

this, as it then enables you to operate on the remotersestead of asking the proxy to do so.
libcurl will not stand in the way for such invetive actions either!

Proxy Auto-Config

Netscape first came up with this. It is basically a web page (usually using a .pac extension) with a
javascript that whenxecuted by the browser with the requested URL as input, returns information
to the browser on o to connect to the URL. The returned information might be "DIRECT"
(which means no proxy should be used), (PR host:port" (to tell the browser where the proxy

for this particular URL is) or "SOCKS host:port" (to direct the browser to a SOCKS proxy).

libcurl has no means to interpret valeiate javascript and thus it doesndupport this. If you get

yourself in a position where you face this nastyemtion, the following advice h& been men-
tioned and used in the past:

9 May 2005 11



- Depending on the yascript complgity, write up a script that translates it to another language
and eecute that.

- Read the jeascript code and rewrite the same logic in another language.

- Implement a jeascript interpreted, people vm successfully used the Mozillaiascript engine
in the past.

- Ask your admins to stop this, for a static proxy setup or similar.

Pesistence Is The Way to Happiness
Re-cycling the same easy handleesal times when doing multiple requests is the way to go.

After each singleurl_easy perform(3) operation, libcurl will keep the connectionvaliand open. A subse-
guent request using the same easy handle to the same host might just be able to use the already open con-
nection! This reduces network impact a lot.

Even if the connection is dropped, all connectiowsliring SSL to the same host again, will benefit from
libcurl's ®ssion ID cache that drastically reduces re-connection time.

FTP connections that are keptvalisaves a bt of time, as the command- response round-trips are skipped,
and also you don'isk getting blocked without permission to login agaire ldn mary FTP servers only
allowing N persons to be logged in at the same time.

libcurl caches DNS name resolving results, to elakkups of a previously looked up name a lot faster.
Other interesting details that impeperformance for subsequent requests may also be added in the future.

Each easy handle will attempt to keep the lastdennections alie for a while in case tlyeare to be used
again. You can set the size of this "cache" with the CURLOPT_MAXCONNECTS option. Default is 5. It is
very seldom aw point in changing this value, and if you think of changing this it is often just a matter of
thinking again.

When the connection cache gets filled, libcurl must close an existing connection in order to get room for the
new one. 1o know which connection to close, libcurl uses a "close policy" that you can affect with the
CURLOPT_CLOSEPOLICY option. Thee'only two polices implemented as of this writing (libcurl
7.9.4) and theare:

CURLCLOSEPOLICY_LEAST_RECENTLY_USED
simply close the one that hasheen used for the longest time. This is the default\weha
ior.

CURLCLOSEPOLICY_OLDEST
closes the oldest connection, the one that was created the longest time ago.

There are, or at least were, plans to support a close plaéitwould call a user-specified callback to let the

user be able to decide which connection to dump when this is necessary and therefor is the CUR-
LOPT_CLOSEFUNCTION an existing option still tod&othing ever uses this though and this will not be

used within the foreseeable future either.

To force your upcoming request to not use an already existing connection (ivemildese one first if

there happens to be onevalio the same host you're about to operate on), you can do that by setting CUR-
LOPT_FRESH_CONNECT to TRUE. In a similar spirit, you can also forbid the upcoming request to be
"lying" around and possibly get re-used after the request by setting CURLOPT_FORBID_REUSE to

libcurl 9 May 2005 12



TRUE.

HTTP Headers Used by libcurl

When you use libcurl to do HTTP requestd] ftass along a series of headers automatickliypight be
good for you to kner and understand these ones.

Host  Thisheader is required by HTTP 1.1 ancremary 1.0 servers and should be the name of the
server we want to talk to. This includes the port number if anything but default.

Pragma "no-cacheTells a possible proxy to not grab a gdpom the cache but to fetch a fresh one.

Accept "*/*",

Expect: Wherdoing multi-part formposts, libcurl will set this header to "100-continue" to ask therserv
for an "OK" message before it proceeds with sending the data part of the post.

Customizing Operations

libcurl

There is an ongoing deopment today where more and more protocols are built upon HTTP for transport.
This has obious benefits as HTTP is a tested and reliable protocol that is widely deployed/areided:
lent proxy-support.

When you use one of these protocols, areh evhen doing other kinds of programming you may need to
change the traditional HTTP (or FTP..9gr mannersYou may need to change words, headersarious
data.

libcurl is your friend here too.

CUSTOMREQUEST
If just changing the actual HTTP requestikord is what you want, lik when GET HEAD or
POST is not good enough for you, CURLOPT_CIOBMIREQUEST is there for you. It isery
simple to use:

curl_easy_setopt(easyhandle, CURLOPT_CUSTOMREQUH8Y OWNRUQUEST");
When using the custom request, you change the regeyedrd of the actual request you are-per

forming. Thus, by default you makGET request but you can also neak ROST operation (as
described before) and then replace the PCSilvérd if you want to. You're the boss.

Modify Headers
HTTP-like protocols pass a series of headers to the server when doing the request, and you're free
to pass apamount of extra headers that you think fit. Adding headers are this easy:
struct curl_slist *headers=NULL; /* init to NULL is important */

headers = curl_slist_append(headers, "Hey-server-heyateoyou?");
headers = curl_slist_append(headers, "X-silly-content: yes");

[* pass our list of custom made headers */
curl_easy_setopt(easyhandle, CURLOPT_HTTPHEADER, headers);

curl_easy_perform(easyhandle); /* transfer http */

9 May 2005 13



curl_slist_free_all(headers); /* free the header list */

... and if you think some of the internally generated headers, such as Accept: or Hosbrdon’
tain the data you want them to contain, you can replace them by simply setting them too:

headers = curl_slist_append(headers, "Accept: Agent-007");
headers = curl_slist_append(headers, "Host: munged.host.line");

Delete Headers
If you replace an existing header with one with no contents, you wileqré¢he header from
being sent. Lik if you want to completely pvent the "Accept:" header to be sent, you can disable
it with code similar to this:

headers = curl_slist_append(headers, "Accept:");

Both replacing and canceling internal headers should be done with careful consideration and you
should be ware that you may violate the HTTP protocol when doing so.

Enforcing chunked transfer-encoding

By making sure a request uses the custom headensferEncoding: chunked" when doing a
non-GET HTTP operation, libcurl will switchver to "chunlked" upload, een though the size of
the data to upload might be kmo. By default, libcurl usually switchese to chunked upload
automatically if the upload data size is unknown.

HTTP Version

Theres only one aspect left in the HTTP requests that westiayet mentioned he to modify:
the version field. All HTTP requests includes tlsion number to tell the server whicérsion
we support. libcurl speak HTTP 1.1 by default. Some very old servers Hoa’ getting
1.1-requests and when dealing with stubborn old thingsthi&t, you can tell libcurl to use 1.0
instead by doing something éikhis:

curl_easy_setopt(easyhandle, CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_1 0);

FTP Custom Commands

Not all protocols are HTTP-like, and thus the abaay not help you when you want to nesfor
example your FTP transfers to bebalfferently.

Sending custom commands to a FTP eemgeans that you need to send the commands exactly as
the FTP server expects them (RFC959 is a good guide here), and you can only use commands that
work on the control-connection alone. All kinds of commands that requires data interchange and
thus needs a data-connection must be left to litconh judgment. Also beveare that libcurl

will do its very best to change directory to the target directory before dojnigaansfer so if you

change directory (with CWD or similar) you might confuse libcurl and then it might not attempt to
transfer the file in the correct remote directory.

A little example that deletes avgn file before an operation:
headers = curl_slist_append(headers, "DELE file-to-ve)io

[* pass the list of custom commands to the handle */

libcurl 9 May 2005 14



curl_easy_setopt(easyhandle, CURLOPT_QUOTE, headers);
curl_easy_perform(easyhandle); /* transfer ftp data! */
curl_slist_free_all(headers); /* free the header list */

If you would instead ant this operation (or chain of operations) to happen _after _the data trans-
fer took place the option tocurl_easy setopt(3) would instead be called CUR-
LOPT_POSTQUOTE and used the exact same way.

The custom FTP command will be issued to the server in the same oxdanetheded to the list,
and if a command gets an error code returned back from ther, sgsurore commands will be
issued and libcurl will bail out with an error code (CURLE_FTBQJE_ERFOR). Note that if
you use CURLOPT_QOTE to send commands before a trangfertransfer will actually tak&
place when a quote command has failed.

If you set the CURLOPT_HEADER to true, you will tell libcurl to get information about tigettar
file and output "headers" about it. The headers will be in "HTTP-style", lookiaghid¢ do in
HTTP.

The option to enable headers or to run custom FTP commands may be useful to combine with
CURLOPT_NOBOL. If this option is set, no actual file content transfer will be performed.

FTP Custom CUSTOMREQUEST
If you do what list the contents of a FTP directory using your defined FTP command, CUR-

LOPT_CUSTOMREQ®EST will do just that. "NLST" is the default one for listing directorias b
you're free to pass in your idea of a good alteveati

Cookies Without Chocolate Chips

libcurl

In the HTTP sense, a cookie is a name with an associakeel. A server sends the name and value to the
client, and expects it to get sent back wery subsequent request to the server that matches the particular
conditions set. The conditions include that the domain name and path match and that the codkie hasn

become too old.

In real-world cases, servers senevrg@okies to replacexésting one to update them. Server use cookies to
"track" users and to keep "sessions".

Cookies are sent from semvto clients with the header Set-Cookie: ang’tigesent from clients to sexxs
with the Cookie: header.

To just send whater cookie you want to a seey you can use CURLOPT_COOKIE to set a cookie string
like this:

curl_easy_setopt(easyhandle, CURLOPT_COOKIE, "namel=varl; name2=var2;");

In mary cases, that is not enoughoty might want to dynamically ga whatever cookies the remote sew
passes to you, and meakure those cookies are then use accordingly on later requests.

One vay to do this, is to & dl headers you receg in a dain file and when you maka equest, you tell
libcurl to read the previous headers to figure out which cookies to use. Set header file to read cookies from
with CURLOPT_COOKIEFILE.

The CURLOPT_COOKIEFILE option also automatically enables the cookie parser in libcurl. Until the
cookie parser is enabled, libcurl will not parse or understand incoming cookies gndilthist be

9 May 2005 15



ignored. Havever, when the parser is enabled the cookies will be understood and the cookies will be kept in
memory and used properly in subsequent requests when the same handle is ugeiméathis is
enough, and you may notvea savethe cookies to disk at all. Note that the file you specify to CUR-
LOPT_COOKIEFILE doest’haveto exist to enable the parsepo a ommon way to just enable the parser
and not read able might be to use a file name yow kioesnt exist.

If you rather use existing cookies that wamijreviously receved with your Netscape or Mozilla brnsers,
you can mak libcurl use that cookie file as input. The CURLOPT_COOKIEFILE is used for that too, as
libcurl will automatically find out what kind of file it is and act accordingly.

The perhaps most advanced cookie operation libcurl offersyiisgstne entire internal cookie state back

into a Netscape/Mozilla formatted cookie filee\sll that the cookie-jaMWhen you set a file hame with
CURLOPT_COOKIEAR, that file name will be created and all reedicookies will be stored in it when
curl_easy cleanup(3) is called. This enabled cookies to get passed on properly between multiple handles
without ary information getting lost.

FTP Peculiarities We Need
FTP transfers use a second TCP/IP connection for the data trahsfes usually a fact you can forget and
ignore but at times thisa€t will come back to haunt you. libcurl offersraml different ways to custom
how the second connection is being made.

libcurl can either connect to the sena second time or tell the server to connect back to it. The first option
is the default and it is also what works best for all the people behindifeNATs or IP-masquerading
setups. libcurthen tells the server to open up avngort and wait for a second connection. This is by
default attempted with EPSYV first, and if that do¢svork it tries PASV instead. (EPSV is an extension to
the original FTP spec and does not exist nor work on all FTP servers.)

You can prevent libcurl from first trying the EPSV command by setting CURLOPT_FTP_USE_EPSV to
FALSE.

In some cases, you will prefer tovieathe server connect back to you for the second connection. This might
be when the server is perhaps behind avéiteor something and only ales connections on a single port.
libcurl then informs the remote server which IP address and port number to connBEuists made with

the CURLOPT_FTPPORoption. If you set it to "-", libcurl will use your systest'default IP address"”. If

you want to use a particular, fou can set the full IP address, a host name to ms$olan IP ddress or

even a local network interface name that libcurl will get the IP address from.

When doing the "PORT" approach, libcurl will attempt to use theTEdPE the LPR before trying POR,
as thg work with more protocols. You can disable this haébtiaby setting CURLOPT_FTP_USE_EPR
FALSE.

Headers Equal Fun
Some protocols provide "headers", meta-data separated from the normal data. These headersalte by def
not included in the normal data stream, but you carentekn appear in the data stream by setting CUR-
LOPT_HEADER to TRUE.

What might be een more useful, is libcur$ ability to separate the headers from the data and thue tnek
callbacks difer. You can for example set a different pointer to pass to the ordinary write callback by setting
CURLOPT_WRITEHEADER.

Or, you can set an entirely separate function to veckhie headers, by using CURLOPT_HEADERFUNC-
TION.

The headers are passed to the callback function one by one, and you can depend on that fact. It makes it

libcurl 9 May 2005 16



easier for you to add custom header parsers etc.

"Headers" for FTP transfers equal all the FTP exeresponses. Thiearen't actually true headers, but in
this case we pretend there! ;-)

Post Transfer Information
[ curl_easy_getinfo ]

Security Considerations
libcurl is in itself not insecure. If used the right wagu can use libcurl to transfer data pretty safely.

There are of course mathings to consider that may loosen up this situation:

Command Lines

.netrc

If you use a command line tool (such as curl) that uses libcurl, and w@wapgion to the tool on
the command line those options can very likely get read by other users of your system when the
use 'ps’ or other tools to list currently running processes.

To avoid this problem, neer feed sensitie things to programs using command line options.

.netrgs a pretty handy file/feature that all® you to login quickly and automatically to frequently
visited sites. The file contains passwords in clear text and is a real security risk. In some cases,
your .netrc is also stored in a home directory that is NFS mounted or used on anotbdt netw
based file system, so the cleaxttpassword will fly through your networkv&y time aryone

reads that file!

To avoid this problem, dort’use .netrc files and wer store passwords in plain text anywhere.

Clear Ext Passwords

Many of the protocols libcurl supports send name and paxsswnencrypted as clear text (HTTP
Basic authentication, FTPELNET etc). It is very easy for anyone on your natvor a netwrk
nearby yours, to just fire up a nettkk analyzer tool and gesdrop on your passwords. Doihét
the fact that HTTP uses base64 encoded passwords fool yopnmEyenot look readable at a first
glance, but thevery easily "deciphered" by anyone within seconds.

To avoid this problem, use protocols that dolet snoopers see your password: HTTPS, FTPS and
FTP-kerberos are afeexamples. HTTP Digest authentication allows this too, but spported
by libcurl as of this writing.

Showing What You Do

On a related issue, bavare that gen in dtuations like when you hee problems with libcurl and

ask someone for helpyerything you reeal in order to get best possible help might also impose
certain security related risks. Host names, user names, paths, operating system specifics etc (not to
mention passwords of course) may @ctfbe used by intruders to gain additional information of a
potential target.

To avoid this problem, you must of course use your common sense. Often, you can just edit out the
sensitve data or just search/replace your true information with faked data.

Multiple Transfers Using the multi Interface
The easy interface as described in detail in this document is a synchronous interface that transfers one file at
a time and doeshteturn until its done.

libcurl

9 May 2005 17



The multi interface on the other hand, allows your program to transfer multiple files in both directions at
the same time, without forcing you to use multiple threads.

To uwse this interface, you are bettef ibfy ou first understand the basics ofahto use the easy inteate.
The multi interface is simply a way to maRkultiple transfers at the same time, by adding up multiple easy
handles in to a "multi stack".

You create the easy handles you want and you set all the options @ugblikhare been told abee, and
then you create a multi handle withrl_multi_init(3) and add all those easy handles to that multi handle
with curl_multi_add_handle(3).

When youve alded the handles youveafor the moment (you can still addwenes at aptime), you start
the transfers by catiurl_multi_perform(3).

curl_multi_perform(3) is asynchronous. It will onlyxecute as little as possible and then return back con-
trol to your program. It is designed toveeblock. If it returns CURLM_CALL_MULTI_PERFORM you
better call it again soon, as that is a signal that it still has local data to send or remote dataeto recei

The best usage of this intade is when you do a select() on all possible file descriptors or socketamo kno
when to call libcurl again. This also makes it easy for youaib and respond to actions on your own appli-
cation’s ockets/handles. You figure out what to select() for by usimgg multi_fdset(3), that fills in a set

of fd_set variables for you with the particular file descriptors libcurl uses for the moment.

When you then call select(), litreturn when one of the file handles signal action and you then call
curl_multi_perform(3) to allow libcurl to do what it vants to do. &ke note that libcurl does also feature
some time-out code so we advice you taeneuse very long timeouts on select() before you call
curl_multi_perform(3), which thus should be called unconditionali¥ery now and then gen if none of its

file descriptors hae dgnaled readyAnother precaution you should usewals call curl_multi_fdset(3)
immediately before the select() call since the current set of file descriptors may change when calling a curl
function.

If you want to stop the transfer of one of the easy handles in the stack, you carl uselti_remove han-
die(3) to remwve individual easy handles. Remember that easy handles should bemsy cleanup(3)ed.

When a transfer within the multi stack has finished, the counter of running transfers (as filled in by
curl_multi_perform(3)) will decrease. When the number reaches zero, all transfers are done.

curl_multi_info_read(3) can be used to get information about completed transfers. It then returns the
CURLcode for each easy transferdlow you to figure out success on each individual transfer.

SSL, Certificates and Other Tricks

[ seeding, passwordsels, certificates, ENGINE, ca certs ]

Sharing Data Between Easy Handles

[fillin]

Footnotes

libcurl

[1] libcurl 7.10.3 and later va the ability to switch wer to chunked TransferEncoding in cases were
HTTP uploads are done with data of an unknown size.

[2] This happens on Wdows machines when libcurl is built and used as a DLLwé¥er, you can
still do this on Windows if you link with a static library.

9 May 2005 18



[3] The curl-config tool is generated at build-time (on unieldystems) and should be installed with
the 'male install’ or similar instruction that installs the librahgader files, man pages etc.

libcurl 9 May 2005 19



