2024-07-24 12:32:56 +05:30

917 lines
32 KiB
Dart

import "dart:async";
import "dart:developer" as dev show log;
import "dart:io" show File, Platform;
import "dart:isolate";
import "dart:math" show min;
import "dart:typed_data" show Uint8List, ByteData;
import "package:dart_ui_isolate/dart_ui_isolate.dart";
import "package:flutter/foundation.dart" show debugPrint, kDebugMode;
import "package:logging/logging.dart";
import "package:package_info_plus/package_info_plus.dart";
import "package:photos/core/error-reporting/super_logging.dart";
import "package:photos/core/event_bus.dart";
import "package:photos/db/files_db.dart";
import "package:photos/events/machine_learning_control_event.dart";
import "package:photos/events/people_changed_event.dart";
import "package:photos/extensions/list.dart";
import "package:photos/face/db.dart";
import "package:photos/face/model/box.dart";
import "package:photos/face/model/detection.dart" as face_detection;
import "package:photos/face/model/dimension.dart";
import "package:photos/face/model/face.dart";
import "package:photos/face/model/landmark.dart";
import "package:photos/service_locator.dart";
import 'package:photos/services/machine_learning/face_ml/face_clustering/face_clustering_service.dart';
import "package:photos/services/machine_learning/face_ml/face_clustering/face_db_info_for_clustering.dart";
import 'package:photos/services/machine_learning/face_ml/face_detection/face_detection_service.dart';
import 'package:photos/services/machine_learning/face_ml/face_embedding/face_embedding_service.dart';
import 'package:photos/services/machine_learning/face_ml/face_filtering/face_filtering_constants.dart';
import "package:photos/services/machine_learning/face_ml/face_recognition_service.dart";
import "package:photos/services/machine_learning/face_ml/person/person_service.dart";
import "package:photos/services/machine_learning/file_ml/file_ml.dart";
import "package:photos/services/machine_learning/file_ml/remote_fileml_service.dart";
import 'package:photos/services/machine_learning/ml_exceptions.dart';
import 'package:photos/services/machine_learning/ml_result.dart';
import "package:photos/services/machine_learning/semantic_search/clip/clip_image_encoder.dart";
import "package:photos/services/machine_learning/semantic_search/semantic_search_service.dart";
import "package:photos/utils/image_ml_util.dart";
import "package:photos/utils/local_settings.dart";
import "package:photos/utils/ml_util.dart";
import "package:photos/utils/network_util.dart";
import "package:synchronized/synchronized.dart";
enum FaceMlOperation { analyzeImage, loadModels }
/// This class is responsible for running the full face ml pipeline on images.
///
/// WARNING: For getting the ML results needed for the UI, you should use `FaceSearchService` instead of this class!
///
/// The pipeline consists of face detection, face alignment and face embedding.
class MLService {
final _logger = Logger("FaceMlService");
// Flutter isolate things for running the image ml pipeline
Timer? _inactivityTimer;
final Duration _inactivityDuration = const Duration(seconds: 120);
int _activeTasks = 0;
late DartUiIsolate _isolate;
late ReceivePort _receivePort = ReceivePort();
late SendPort _mainSendPort;
// Singleton pattern
MLService._privateConstructor();
static final instance = MLService._privateConstructor();
factory MLService() => instance;
final _initModelLock = Lock();
final _functionLock = Lock();
final _initIsolateLock = Lock();
bool _isInitialized = false;
bool _isModelsInitialized = false;
bool _isModelsInitUsingEntePlugin = false;
bool _isIsolateSpawned = false;
late String client;
bool get isInitialized => _isInitialized;
bool get showClusteringIsHappening => _showClusteringIsHappening;
bool get allModelsLoaded => _isModelsInitialized;
bool debugIndexingDisabled = false;
bool _showClusteringIsHappening = false;
bool _mlControllerStatus = false;
bool _isIndexingOrClusteringRunning = false;
bool _shouldPauseIndexingAndClustering = false;
static const int _fileDownloadLimit = 10;
static const _kForceClusteringFaceCount = 8000;
/// Only call this function once at app startup, after that you can directly call [runAllML]
Future<void> init() async {
if (LocalSettings.instance.isFaceIndexingEnabled == false ||
_isInitialized) {
return;
}
_logger.info("init called");
// Activate FaceRecognitionService
await FaceRecognitionService.instance.init();
// Listen on MachineLearningController
Bus.instance.on<MachineLearningControlEvent>().listen((event) {
if (LocalSettings.instance.isFaceIndexingEnabled == false) {
return;
}
_mlControllerStatus = event.shouldRun;
if (_mlControllerStatus) {
if (_shouldPauseIndexingAndClustering) {
_shouldPauseIndexingAndClustering = false;
_logger.info(
"MLController allowed running ML, faces indexing undoing previous pause",
);
} else {
_logger.info(
"MLController allowed running ML, faces indexing starting",
);
}
unawaited(runAllML());
} else {
_logger.info(
"MLController stopped running ML, faces indexing will be paused (unless it's fetching embeddings)",
);
pauseIndexingAndClustering();
}
});
_isInitialized = true;
_logger.info('init done');
}
Future<void> sync() async {
await FaceRecognitionService.instance.sync();
}
Future<void> runAllML({bool force = false}) async {
try {
if (force) {
_mlControllerStatus = true;
}
if (_cannotRunMLFunction() && !force) return;
await sync();
final int unclusteredFacesCount =
await FaceMLDataDB.instance.getUnclusteredFaceCount();
if (unclusteredFacesCount > _kForceClusteringFaceCount) {
_logger.info(
"There are $unclusteredFacesCount unclustered faces, doing clustering first",
);
await clusterAllImages();
}
await indexAllImages();
await clusterAllImages();
} catch (e, s) {
_logger.severe("runAllML failed", e, s);
rethrow;
}
}
void pauseIndexingAndClustering() {
if (_isIndexingOrClusteringRunning) {
_shouldPauseIndexingAndClustering = true;
}
}
/// Analyzes all the images in the database with the latest ml version and stores the results in the database.
///
/// This function first checks if the image has already been analyzed with the lastest faceMlVersion and stored in the database. If so, it skips the image.
Future<void> indexAllImages() async {
if (_cannotRunMLFunction()) return;
try {
_isIndexingOrClusteringRunning = true;
_logger.info('starting image indexing');
final filesToIndex = await getFilesForMlIndexing();
final List<List<FileMLInstruction>> chunks =
filesToIndex.chunks(_fileDownloadLimit);
int fileAnalyzedCount = 0;
final Stopwatch stopwatch = Stopwatch()..start();
outerLoop:
for (final chunk in chunks) {
if (!await canUseHighBandwidth()) {
_logger.info(
'stopping indexing because user is not connected to wifi',
);
break outerLoop;
}
final futures = <Future<bool>>[];
for (final instruction in chunk) {
if (_shouldPauseIndexingAndClustering) {
_logger.info("indexAllImages() was paused, stopping");
break outerLoop;
}
await _ensureReadyForInference();
futures.add(processImage(instruction));
}
final awaitedFutures = await Future.wait(futures);
final sumFutures = awaitedFutures.fold<int>(
0,
(previousValue, element) => previousValue + (element ? 1 : 0),
);
fileAnalyzedCount += sumFutures;
}
_logger.info(
"`indexAllImages()` finished. Analyzed $fileAnalyzedCount images, in ${stopwatch.elapsed.inSeconds} seconds (avg of ${stopwatch.elapsed.inSeconds / fileAnalyzedCount} seconds per image)",
);
_logStatus();
} catch (e, s) {
_logger.severe("indexAllImages failed", e, s);
} finally {
_isIndexingOrClusteringRunning = false;
_shouldPauseIndexingAndClustering = false;
}
}
Future<void> clusterAllImages({
double minFaceScore = kMinimumQualityFaceScore,
bool clusterInBuckets = true,
}) async {
if (_cannotRunMLFunction()) return;
_logger.info("`clusterAllImages()` called");
_isIndexingOrClusteringRunning = true;
final clusterAllImagesTime = DateTime.now();
_logger.info('Pulling remote feedback before actually clustering');
await PersonService.instance.fetchRemoteClusterFeedback();
try {
_showClusteringIsHappening = true;
// Get a sense of the total number of faces in the database
final int totalFaces = await FaceMLDataDB.instance
.getTotalFaceCount(minFaceScore: minFaceScore);
final fileIDToCreationTime =
await FilesDB.instance.getFileIDToCreationTime();
final startEmbeddingFetch = DateTime.now();
// read all embeddings
final result = await FaceMLDataDB.instance.getFaceInfoForClustering(
minScore: minFaceScore,
maxFaces: totalFaces,
);
final Set<int> missingFileIDs = {};
final allFaceInfoForClustering = <FaceDbInfoForClustering>[];
for (final faceInfo in result) {
if (!fileIDToCreationTime.containsKey(faceInfo.fileID)) {
missingFileIDs.add(faceInfo.fileID);
} else {
allFaceInfoForClustering.add(faceInfo);
}
}
// sort the embeddings based on file creation time, newest first
allFaceInfoForClustering.sort((b, a) {
return fileIDToCreationTime[a.fileID]!
.compareTo(fileIDToCreationTime[b.fileID]!);
});
_logger.info(
'Getting and sorting embeddings took ${DateTime.now().difference(startEmbeddingFetch).inMilliseconds} ms for ${allFaceInfoForClustering.length} embeddings'
'and ${missingFileIDs.length} missing fileIDs',
);
// Get the current cluster statistics
final Map<int, (Uint8List, int)> oldClusterSummaries =
await FaceMLDataDB.instance.getAllClusterSummary();
if (clusterInBuckets) {
const int bucketSize = 10000;
const int offsetIncrement = 7500;
int offset = 0;
int bucket = 1;
while (true) {
if (_shouldPauseIndexingAndClustering) {
_logger.info(
"MLController does not allow running ML, stopping before clustering bucket $bucket",
);
break;
}
if (offset > allFaceInfoForClustering.length - 1) {
_logger.warning(
'faceIdToEmbeddingBucket is empty, this should ideally not happen as it should have stopped earlier. offset: $offset, totalFaces: $totalFaces',
);
break;
}
if (offset > totalFaces) {
_logger.warning(
'offset > totalFaces, this should ideally not happen. offset: $offset, totalFaces: $totalFaces',
);
break;
}
final bucketStartTime = DateTime.now();
final faceInfoForClustering = allFaceInfoForClustering.sublist(
offset,
min(offset + bucketSize, allFaceInfoForClustering.length),
);
if (faceInfoForClustering.every((face) => face.clusterId != null)) {
_logger.info('Everything in bucket $bucket is already clustered');
if (offset + bucketSize >= totalFaces) {
_logger.info('All faces clustered');
break;
} else {
_logger.info('Skipping to next bucket');
offset += offsetIncrement;
bucket++;
continue;
}
}
final clusteringResult =
await FaceClusteringService.instance.predictLinearIsolate(
faceInfoForClustering.toSet(),
fileIDToCreationTime: fileIDToCreationTime,
offset: offset,
oldClusterSummaries: oldClusterSummaries,
);
if (clusteringResult == null) {
_logger.warning("faceIdToCluster is null");
return;
}
await FaceMLDataDB.instance
.updateFaceIdToClusterId(clusteringResult.newFaceIdToCluster);
await FaceMLDataDB.instance
.clusterSummaryUpdate(clusteringResult.newClusterSummaries);
Bus.instance.fire(PeopleChangedEvent());
for (final faceInfo in faceInfoForClustering) {
faceInfo.clusterId ??=
clusteringResult.newFaceIdToCluster[faceInfo.faceID];
}
for (final clusterUpdate
in clusteringResult.newClusterSummaries.entries) {
oldClusterSummaries[clusterUpdate.key] = clusterUpdate.value;
}
_logger.info(
'Done with clustering ${offset + faceInfoForClustering.length} embeddings (${(100 * (offset + faceInfoForClustering.length) / totalFaces).toStringAsFixed(0)}%) in bucket $bucket, offset: $offset, in ${DateTime.now().difference(bucketStartTime).inSeconds} seconds',
);
if (offset + bucketSize >= totalFaces) {
_logger.info('All faces clustered');
break;
}
offset += offsetIncrement;
bucket++;
}
} else {
final clusterStartTime = DateTime.now();
// Cluster the embeddings using the linear clustering algorithm, returning a map from faceID to clusterID
final clusteringResult =
await FaceClusteringService.instance.predictLinearIsolate(
allFaceInfoForClustering.toSet(),
fileIDToCreationTime: fileIDToCreationTime,
oldClusterSummaries: oldClusterSummaries,
);
if (clusteringResult == null) {
_logger.warning("faceIdToCluster is null");
return;
}
final clusterDoneTime = DateTime.now();
_logger.info(
'done with clustering ${allFaceInfoForClustering.length} in ${clusterDoneTime.difference(clusterStartTime).inSeconds} seconds ',
);
// Store the updated clusterIDs in the database
_logger.info(
'Updating ${clusteringResult.newFaceIdToCluster.length} FaceIDs with clusterIDs in the DB',
);
await FaceMLDataDB.instance
.updateFaceIdToClusterId(clusteringResult.newFaceIdToCluster);
await FaceMLDataDB.instance
.clusterSummaryUpdate(clusteringResult.newClusterSummaries);
Bus.instance.fire(PeopleChangedEvent());
_logger.info('Done updating FaceIDs with clusterIDs in the DB, in '
'${DateTime.now().difference(clusterDoneTime).inSeconds} seconds');
}
_logger.info('clusterAllImages() finished, in '
'${DateTime.now().difference(clusterAllImagesTime).inSeconds} seconds');
} catch (e, s) {
_logger.severe("`clusterAllImages` failed", e, s);
} finally {
_showClusteringIsHappening = false;
_isIndexingOrClusteringRunning = false;
_shouldPauseIndexingAndClustering = false;
}
}
Future<bool> processImage(FileMLInstruction instruction) async {
// TODO: clean this function up
_logger.info(
"`processImage` start processing image with uploadedFileID: ${instruction.file.uploadedFileID}",
);
bool actuallyRanML = false;
try {
final MLResult? result = await _analyzeImageInSingleIsolate(
instruction,
);
if (result == null) {
if (!_shouldPauseIndexingAndClustering) {
_logger.severe(
"Failed to analyze image with uploadedFileID: ${instruction.file.uploadedFileID}",
);
}
return actuallyRanML;
}
if (result.facesRan) {
actuallyRanML = true;
final List<Face> faces = [];
if (result.foundNoFaces) {
debugPrint(
'No faces detected for file with name:${instruction.file.displayName}',
);
faces.add(
Face.empty(result.fileId, error: result.errorOccured),
);
}
if (result.foundFaces) {
if (result.decodedImageSize.width == -1 ||
result.decodedImageSize.height == -1) {
_logger.severe(
"decodedImageSize is not stored correctly for image with "
"ID: ${instruction.file.uploadedFileID}");
_logger.info(
"Using aligned image size for image with ID: ${instruction.file.uploadedFileID}. This size is ${result.decodedImageSize.width}x${result.decodedImageSize.height} compared to size of ${instruction.file.width}x${instruction.file.height} in the metadata",
);
}
for (int i = 0; i < result.faces!.length; ++i) {
final FaceResult faceRes = result.faces![i];
final detection = face_detection.Detection(
box: FaceBox(
x: faceRes.detection.xMinBox,
y: faceRes.detection.yMinBox,
width: faceRes.detection.width,
height: faceRes.detection.height,
),
landmarks: faceRes.detection.allKeypoints
.map(
(keypoint) => Landmark(
x: keypoint[0],
y: keypoint[1],
),
)
.toList(),
);
faces.add(
Face(
faceRes.faceId,
result.fileId,
faceRes.embedding,
faceRes.detection.score,
detection,
faceRes.blurValue,
fileInfo: FileInfo(
imageHeight: result.decodedImageSize.height,
imageWidth: result.decodedImageSize.width,
),
),
);
}
}
_logger.info("inserting ${faces.length} faces for ${result.fileId}");
if (!result.errorOccured) {
await RemoteFileMLService.instance.putFileEmbedding(
instruction.file,
instruction.existingRemoteFileML ??
RemoteFileML.empty(
instruction.file.uploadedFileID!,
),
faceEmbedding: result.facesRan
? RemoteFaceEmbedding(
faces,
result.mlVersion,
client: client,
height: result.decodedImageSize.height,
width: result.decodedImageSize.width,
)
: null,
clipEmbedding: result.clipRan
? RemoteClipEmbedding(
result.clip!.embedding,
version: result.mlVersion,
client: client,
)
: null,
);
} else {
_logger.warning(
'Skipped putting embedding because of error ${result.toJsonString()}',
);
}
await FaceMLDataDB.instance.bulkInsertFaces(faces);
}
if (result.clipRan) {
actuallyRanML = true;
await SemanticSearchService.storeClipImageResult(
result.clip!,
instruction.file,
);
}
} on ThumbnailRetrievalException catch (e, s) {
_logger.severe(
'ThumbnailRetrievalException while processing image with ID ${instruction.file.uploadedFileID}, storing empty face so indexing does not get stuck',
e,
s,
);
await FaceMLDataDB.instance.bulkInsertFaces(
[Face.empty(instruction.file.uploadedFileID!, error: true)],
);
await SemanticSearchService.storeEmptyClipImageResult(
instruction.file,
);
return true;
} catch (e, s) {
_logger.severe(
"Failed to analyze using FaceML for image with ID: ${instruction.file.uploadedFileID}. Not storing any faces, which means it will be automatically retried later.",
e,
s,
);
return false;
}
return actuallyRanML;
}
Future<void> _initModelsUsingFfiBasedPlugin() async {
return _initModelLock.synchronized(() async {
if (_isModelsInitialized) return;
_logger.info('initModels called');
// Get client name
final packageInfo = await PackageInfo.fromPlatform();
client = "${packageInfo.packageName}/${packageInfo.version}";
_logger.info("client: $client");
// Initialize models
try {
await FaceDetectionService.instance.loadModel();
} catch (e, s) {
_logger.severe("Could not initialize yolo onnx", e, s);
}
try {
await FaceEmbeddingService.instance.loadModel();
} catch (e, s) {
_logger.severe("Could not initialize mobilefacenet", e, s);
}
try {
await ClipImageEncoder.instance.loadModel();
} catch (e, s) {
_logger.severe("Could not initialize clip image", e, s);
}
_isModelsInitialized = true;
_logger.info('initModels done');
_logStatus();
});
}
Future<void> _initModelUsingEntePlugin() async {
return _initModelLock.synchronized(() async {
if (_isModelsInitUsingEntePlugin) return;
_logger.info('initModelUsingEntePlugin called');
// Get client name
final packageInfo = await PackageInfo.fromPlatform();
client = "${packageInfo.packageName}/${packageInfo.version}";
_logger.info("client: $client");
// Initialize models
try {
await _runInIsolate(
(FaceMlOperation.loadModels, {}),
);
_isModelsInitUsingEntePlugin = true;
} catch (e, s) {
_logger.severe("Could not initialize clip image", e, s);
}
_logger.info('initModelUsingEntePlugin done');
_logStatus();
});
}
Future<void> _releaseModels() async {
return _initModelLock.synchronized(() async {
_logger.info("dispose called");
if (!_isModelsInitialized) {
return;
}
try {
await FaceDetectionService.instance.release();
} catch (e, s) {
_logger.severe("Could not dispose yolo onnx", e, s);
}
try {
await FaceEmbeddingService.instance.release();
} catch (e, s) {
_logger.severe("Could not dispose mobilefacenet", e, s);
}
try {
await ClipImageEncoder.instance.release();
} catch (e, s) {
_logger.severe("Could not dispose clip image", e, s);
}
_isModelsInitialized = false;
});
}
Future<void> _initIsolate() async {
return _initIsolateLock.synchronized(() async {
if (_isIsolateSpawned) return;
_logger.info("initIsolate called");
_receivePort = ReceivePort();
try {
_isolate = await DartUiIsolate.spawn(
_isolateMain,
_receivePort.sendPort,
);
_mainSendPort = await _receivePort.first as SendPort;
_isIsolateSpawned = true;
_resetInactivityTimer();
_logger.info('initIsolate done');
} catch (e) {
_logger.severe('Could not spawn isolate', e);
_isIsolateSpawned = false;
}
});
}
Future<void> _ensureReadyForInference() async {
await _initIsolate();
await _initModelsUsingFfiBasedPlugin();
if (Platform.isAndroid) {
await _initModelUsingEntePlugin();
} else {
await _initModelsUsingFfiBasedPlugin();
}
}
/// The main execution function of the isolate.
@pragma('vm:entry-point')
static void _isolateMain(SendPort mainSendPort) async {
Logger.root.level = kDebugMode ? Level.ALL : Level.INFO;
Logger.root.onRecord.listen((LogRecord rec) {
debugPrint('[MLIsolate] ${rec.toPrettyString()}');
});
final receivePort = ReceivePort();
mainSendPort.send(receivePort.sendPort);
receivePort.listen((message) async {
final functionIndex = message[0] as int;
final function = FaceMlOperation.values[functionIndex];
final args = message[1] as Map<String, dynamic>;
final sendPort = message[2] as SendPort;
try {
switch (function) {
case FaceMlOperation.analyzeImage:
final time = DateTime.now();
final MLResult result = await MLService._analyzeImageSync(args);
dev.log(
"`analyzeImageSync` function executed in ${DateTime.now().difference(time).inMilliseconds} ms",
);
sendPort.send(result.toJsonString());
break;
case FaceMlOperation.loadModels:
await FaceDetectionService.instance.loadModel(useEntePlugin: true);
await FaceEmbeddingService.instance.loadModel(useEntePlugin: true);
await ClipImageEncoder.instance.loadModel(useEntePlugin: true);
sendPort.send(true);
break;
}
} catch (e, stackTrace) {
dev.log(
"[SEVERE] Error in FaceML isolate: $e",
error: e,
stackTrace: stackTrace,
);
sendPort
.send({'error': e.toString(), 'stackTrace': stackTrace.toString()});
}
});
}
/// The common method to run any operation in the isolate. It sends the [message] to [_isolateMain] and waits for the result.
Future<dynamic> _runInIsolate(
(FaceMlOperation, Map<String, dynamic>) message,
) async {
await _initIsolate();
return _functionLock.synchronized(() async {
_resetInactivityTimer();
if (_shouldPauseIndexingAndClustering) {
return null;
}
final completer = Completer<dynamic>();
final answerPort = ReceivePort();
_activeTasks++;
_mainSendPort.send([message.$1.index, message.$2, answerPort.sendPort]);
answerPort.listen((receivedMessage) {
if (receivedMessage is Map && receivedMessage.containsKey('error')) {
// Handle the error
final errorMessage = receivedMessage['error'];
final errorStackTrace = receivedMessage['stackTrace'];
final exception = Exception(errorMessage);
final stackTrace = StackTrace.fromString(errorStackTrace);
completer.completeError(exception, stackTrace);
} else {
completer.complete(receivedMessage);
}
});
_activeTasks--;
return completer.future;
});
}
/// Resets a timer that kills the isolate after a certain amount of inactivity.
///
/// Should be called after initialization (e.g. inside `init()`) and after every call to isolate (e.g. inside `_runInIsolate()`)
void _resetInactivityTimer() {
_inactivityTimer?.cancel();
_inactivityTimer = Timer(_inactivityDuration, () {
if (_activeTasks > 0) {
_logger.info('Tasks are still running. Delaying isolate disposal.');
// Optionally, reschedule the timer to check again later.
_resetInactivityTimer();
} else {
_logger.info(
'Clustering Isolate has been inactive for ${_inactivityDuration.inSeconds} seconds with no tasks running. Killing isolate.',
);
_dispose();
}
});
}
void _dispose() async {
if (!_isIsolateSpawned) return;
_logger.info('Disposing isolate and models');
await _releaseModels();
_isIsolateSpawned = false;
_isolate.kill();
_receivePort.close();
_inactivityTimer?.cancel();
}
/// Analyzes the given image data by running the full pipeline for faces, using [_analyzeImageSync] in the isolate.
Future<MLResult?> _analyzeImageInSingleIsolate(
FileMLInstruction instruction,
) async {
final String filePath = await getImagePathForML(instruction.file);
final Stopwatch stopwatch = Stopwatch()..start();
late MLResult result;
try {
final resultJsonString = await _runInIsolate(
(
FaceMlOperation.analyzeImage,
{
"enteFileID": instruction.file.uploadedFileID ?? -1,
"filePath": filePath,
"runFaces": instruction.shouldRunFaces,
"runClip": instruction.shouldRunClip,
"faceDetectionAddress":
FaceDetectionService.instance.sessionAddress,
"faceEmbeddingAddress":
FaceEmbeddingService.instance.sessionAddress,
"clipImageAddress": ClipImageEncoder.instance.sessionAddress,
}
),
) as String?;
if (resultJsonString == null) {
if (!_shouldPauseIndexingAndClustering) {
_logger.severe('Analyzing image in isolate is giving back null');
}
return null;
}
result = MLResult.fromJsonString(resultJsonString);
} catch (e, s) {
_logger.severe(
"Could not analyze image with ID ${instruction.file.uploadedFileID} \n",
e,
s,
);
debugPrint(
"This image with ID ${instruction.file.uploadedFileID} has name ${instruction.file.displayName}.",
);
final resultBuilder =
MLResult.fromEnteFileID(instruction.file.uploadedFileID!)
..errorOccurred();
return resultBuilder;
}
stopwatch.stop();
_logger.info(
"Finished Analyze image with uploadedFileID ${instruction.file.uploadedFileID}, in "
"${stopwatch.elapsedMilliseconds} ms (including time waiting for inference engine availability)",
);
return result;
}
static Future<MLResult> _analyzeImageSync(Map args) async {
try {
final int enteFileID = args["enteFileID"] as int;
final String imagePath = args["filePath"] as String;
final bool runFaces = args["runFaces"] as bool;
final bool runClip = args["runClip"] as bool;
final int faceDetectionAddress = args["faceDetectionAddress"] as int;
final int faceEmbeddingAddress = args["faceEmbeddingAddress"] as int;
final int clipImageAddress = args["clipImageAddress"] as int;
dev.log(
"Start analyzing image with uploadedFileID: $enteFileID inside the isolate",
);
final time = DateTime.now();
// Decode the image once to use for both face detection and alignment
final imageData = await File(imagePath).readAsBytes();
final image = await decodeImageFromData(imageData);
final ByteData imageByteData = await getByteDataFromImage(image);
dev.log('Reading and decoding image took '
'${DateTime.now().difference(time).inMilliseconds} ms');
final decodedImageSize =
Dimensions(height: image.height, width: image.width);
final result = MLResult.fromEnteFileID(enteFileID);
result.decodedImageSize = decodedImageSize;
if (runFaces) {
final resultFaces = await FaceRecognitionService.runFacesPipeline(
enteFileID,
image,
imageByteData,
faceDetectionAddress,
faceEmbeddingAddress,
);
if (resultFaces.isEmpty) {
return result..noFaceDetected();
}
result.faces = resultFaces;
}
if (runClip) {
final clipResult = await SemanticSearchService.runClipImage(
enteFileID,
image,
imageByteData,
clipImageAddress,
useEntePlugin: Platform.isAndroid,
);
result.clip = clipResult;
}
return result;
} catch (e, s) {
dev.log("Could not analyze image: \n e: $e \n s: $s");
rethrow;
}
}
bool _cannotRunMLFunction({String function = ""}) {
if (kDebugMode && Platform.isIOS) {
return false;
}
if (_isIndexingOrClusteringRunning) {
_logger.info(
"Cannot run $function because indexing or clustering is already running",
);
_logStatus();
return true;
}
if (_mlControllerStatus == false) {
_logger.info(
"Cannot run $function because MLController does not allow it",
);
_logStatus();
return true;
}
if (debugIndexingDisabled) {
_logger.info(
"Cannot run $function because debugIndexingDisabled is true",
);
_logStatus();
return true;
}
if (_shouldPauseIndexingAndClustering) {
// This should ideally not be triggered, because one of the above should be triggered instead.
_logger.warning(
"Cannot run $function because indexing and clustering is being paused",
);
_logStatus();
return true;
}
return false;
}
void _logStatus() {
final String status = '''
isInternalUser: ${flagService.internalUser}
isFaceIndexingEnabled: ${LocalSettings.instance.isFaceIndexingEnabled}
canRunMLController: $_mlControllerStatus
isIndexingOrClusteringRunning: $_isIndexingOrClusteringRunning
shouldPauseIndexingAndClustering: $_shouldPauseIndexingAndClustering
debugIndexingDisabled: $debugIndexingDisabled
''';
_logger.info(status);
}
}