mirror of
https://github.com/ente-io/ente.git
synced 2025-05-03 04:11:28 +00:00
167 lines
5.4 KiB
Dart
167 lines
5.4 KiB
Dart
import "dart:async";
|
|
|
|
import "package:flutter/foundation.dart" show debugPrint;
|
|
import "package:logging/logging.dart";
|
|
import "package:photos/services/isolate_functions.dart";
|
|
import "package:photos/services/isolate_service.dart";
|
|
import 'package:photos/services/machine_learning/face_ml/face_detection/face_detection_service.dart';
|
|
import 'package:photos/services/machine_learning/face_ml/face_embedding/face_embedding_service.dart';
|
|
import "package:photos/services/machine_learning/ml_models_overview.dart";
|
|
import 'package:photos/services/machine_learning/ml_result.dart';
|
|
import "package:photos/services/machine_learning/semantic_search/clip/clip_image_encoder.dart";
|
|
import "package:photos/utils/ml_util.dart";
|
|
|
|
class MLIndexingIsolate extends SuperIsolate {
|
|
@override
|
|
Logger get logger => _logger;
|
|
final _logger = Logger("MLIndexingIsolate");
|
|
|
|
@override
|
|
bool get isDartUiIsolate => true;
|
|
|
|
@override
|
|
String get isolateName => "MLIndexingIsolate";
|
|
|
|
@override
|
|
bool get shouldAutomaticDispose => true;
|
|
|
|
@override
|
|
Future<void> onDispose() async {
|
|
await _releaseModels();
|
|
}
|
|
|
|
@override
|
|
bool postFunctionlockStop(IsolateOperation operation) {
|
|
if (operation == IsolateOperation.analyzeImage &&
|
|
shouldPauseIndexingAndClustering) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool shouldPauseIndexingAndClustering = false;
|
|
|
|
// Singleton pattern
|
|
MLIndexingIsolate._privateConstructor();
|
|
static final instance = MLIndexingIsolate._privateConstructor();
|
|
factory MLIndexingIsolate() => instance;
|
|
|
|
/// Analyzes the given image data by running the full pipeline for faces, using [_analyzeImageSync] in the isolate.
|
|
Future<MLResult?> analyzeImage(
|
|
FileMLInstruction instruction,
|
|
String filePath,
|
|
) async {
|
|
final Stopwatch stopwatch = Stopwatch()..start();
|
|
late MLResult result;
|
|
|
|
try {
|
|
final resultJsonString =
|
|
await runInIsolate(IsolateOperation.analyzeImage, {
|
|
"enteFileID": instruction.file.uploadedFileID ?? -1,
|
|
"filePath": filePath,
|
|
"runFaces": instruction.shouldRunFaces,
|
|
"runClip": instruction.shouldRunClip,
|
|
"faceDetectionAddress": FaceDetectionService.instance.sessionAddress,
|
|
"faceEmbeddingAddress": FaceEmbeddingService.instance.sessionAddress,
|
|
"clipImageAddress": ClipImageEncoder.instance.sessionAddress,
|
|
}) as String?;
|
|
if (resultJsonString == null) {
|
|
if (!shouldPauseIndexingAndClustering) {
|
|
_logger.severe('Analyzing image in isolate is giving back null');
|
|
}
|
|
return null;
|
|
}
|
|
result = MLResult.fromJsonString(resultJsonString);
|
|
} catch (e, s) {
|
|
_logger.severe(
|
|
"Could not analyze image with ID ${instruction.file.uploadedFileID} \n",
|
|
e,
|
|
s,
|
|
);
|
|
debugPrint(
|
|
"This image with ID ${instruction.file.uploadedFileID} has name ${instruction.file.displayName}.",
|
|
);
|
|
rethrow;
|
|
}
|
|
stopwatch.stop();
|
|
_logger.info(
|
|
"Finished Analyze image with uploadedFileID ${instruction.file.uploadedFileID}, in "
|
|
"${stopwatch.elapsedMilliseconds} ms (including time waiting for inference engine availability)",
|
|
);
|
|
|
|
return result;
|
|
}
|
|
|
|
Future<void> loadModels({
|
|
required bool loadFaces,
|
|
required bool loadClip,
|
|
}) async {
|
|
if (!loadFaces && !loadClip) return;
|
|
final List<MLModels> models = [];
|
|
final List<String> modelNames = [];
|
|
final List<String> modelPaths = [];
|
|
if (loadFaces) {
|
|
models.addAll([MLModels.faceDetection, MLModels.faceEmbedding]);
|
|
final faceDetection =
|
|
await FaceDetectionService.instance.getModelNameAndPath();
|
|
modelNames.add(faceDetection.$1);
|
|
modelPaths.add(faceDetection.$2);
|
|
final faceEmbedding =
|
|
await FaceEmbeddingService.instance.getModelNameAndPath();
|
|
modelNames.add(faceEmbedding.$1);
|
|
modelPaths.add(faceEmbedding.$2);
|
|
}
|
|
if (loadClip) {
|
|
models.add(MLModels.clipImageEncoder);
|
|
final clipImage = await ClipImageEncoder.instance.getModelNameAndPath();
|
|
modelNames.add(clipImage.$1);
|
|
modelPaths.add(clipImage.$2);
|
|
}
|
|
|
|
try {
|
|
final addresses =
|
|
await runInIsolate(IsolateOperation.loadIndexingModels, {
|
|
"modelNames": modelNames,
|
|
"modelPaths": modelPaths,
|
|
}) as List<int>;
|
|
for (int i = 0; i < models.length; i++) {
|
|
final model = models[i].model;
|
|
final address = addresses[i];
|
|
model.storeSessionAddress(address);
|
|
}
|
|
} catch (e, s) {
|
|
_logger.severe("Could not load models in MLIndexingIsolate", e, s);
|
|
rethrow;
|
|
}
|
|
}
|
|
|
|
Future<void> _releaseModels() async {
|
|
final List<String> modelNames = [];
|
|
final List<int> modelAddresses = [];
|
|
final List<MLModels> models = [];
|
|
for (final model in MLModels.values) {
|
|
if (!model.isIndexingModel) continue;
|
|
final mlModel = model.model;
|
|
if (mlModel.isInitialized) {
|
|
models.add(model);
|
|
modelNames.add(mlModel.modelName);
|
|
modelAddresses.add(mlModel.sessionAddress);
|
|
}
|
|
}
|
|
if (modelNames.isEmpty) return;
|
|
try {
|
|
await runInIsolate(IsolateOperation.releaseIndexingModels, {
|
|
"modelNames": modelNames,
|
|
"modelAddresses": modelAddresses,
|
|
});
|
|
for (final model in models) {
|
|
model.model.releaseSessionAddress();
|
|
}
|
|
_logger.info("Indexing models released in isolate");
|
|
} catch (e, s) {
|
|
_logger.severe("Could not release models in MLIndexingIsolate", e, s);
|
|
rethrow;
|
|
}
|
|
}
|
|
}
|