ente/web/packages/base/crypto/libsodium.ts
2024-09-07 10:07:55 +05:30

708 lines
22 KiB
TypeScript

/**
* @file A thin-ish layer over the actual libsodium APIs, to make them more
* palatable to the rest of our Javascript code.
*
* All functions are stateless, async, and safe to use in Web Workers.
*
* Docs for the JS library: https://github.com/jedisct1/libsodium.js.
*
* To see where this code fits, see [Note: Crypto code hierarchy].
*/
import { mergeUint8Arrays } from "@/utils/array";
import { CustomError } from "@ente/shared/error";
import sodium, { type StateAddress } from "libsodium-wrappers-sumo";
import type {
BytesOrB64,
EncryptedBlob,
EncryptedBlobB64,
EncryptedBlobBytes,
EncryptedBox,
EncryptedBoxB64,
} from "./types";
/**
* Convert bytes ({@link Uint8Array}) to a base64 string.
*
* See also {@link toB64URLSafe} and {@link toB64URLSafeNoPadding}.
*/
export const toB64 = async (input: Uint8Array) => {
await sodium.ready;
return sodium.to_base64(input, sodium.base64_variants.ORIGINAL);
};
/**
* Convert a base64 string to bytes ({@link Uint8Array}).
*
* This is the converse of {@link toBase64}.
*/
export const fromB64 = async (input: string) => {
await sodium.ready;
return sodium.from_base64(input, sodium.base64_variants.ORIGINAL);
};
/**
* Convert bytes ({@link Uint8Array}) to a URL-safe base64 string.
*
* See also {@link toB64URLSafe} and {@link toB64URLSafeNoPadding}.
*/
export const toB64URLSafe = async (input: Uint8Array) => {
await sodium.ready;
return sodium.to_base64(input, sodium.base64_variants.URLSAFE);
};
/**
* Convert bytes ({@link Uint8Array}) to a unpadded URL-safe base64 string.
*
* This differs from {@link toB64URLSafe} in that it does not append any
* trailing padding character(s) "=" to make the resultant string's length be an
* integer multiple of 4.
*
* - In some contexts, for example when serializing WebAuthn binary for
* transmission over the network, this is the required / recommended
* approach.
*
* - In other cases, for example when trying to pass an arbitrary JSON string
* via a URL parameter, this is also convenient so that we do not have to
* deal with any ambiguity surrounding the "=" which is also the query
* parameter key value separator.
*/
export const toB64URLSafeNoPadding = async (input: Uint8Array) => {
await sodium.ready;
return sodium.to_base64(input, sodium.base64_variants.URLSAFE_NO_PADDING);
};
/**
* Convert a unpadded URL-safe base64 string to bytes ({@link Uint8Array}).
*
* This is the converse of {@link toB64URLSafeNoPadding}, and does not expect
* its input string's length to be a an integer multiple of 4.
*/
export const fromB64URLSafeNoPadding = async (input: string) => {
await sodium.ready;
return sodium.from_base64(input, sodium.base64_variants.URLSAFE_NO_PADDING);
};
/**
* Variant of {@link toB64URLSafeNoPadding} that works with {@link string}
* inputs. See also its sibling method {@link fromB64URLSafeNoPaddingString}.
*/
export const toB64URLSafeNoPaddingString = async (input: string) => {
await sodium.ready;
return toB64URLSafeNoPadding(sodium.from_string(input));
};
/**
* Variant of {@link fromB64URLSafeNoPadding} that works with {@link strings}. See also
* its sibling method {@link toB64URLSafeNoPaddingString}.
*/
export const fromB64URLSafeNoPaddingString = async (input: string) => {
await sodium.ready;
return sodium.to_string(await fromB64URLSafeNoPadding(input));
};
export async function fromUTF8(input: string) {
await sodium.ready;
return sodium.from_string(input);
}
export async function toUTF8(input: string) {
await sodium.ready;
return sodium.to_string(await fromB64(input));
}
export async function toHex(input: string) {
await sodium.ready;
return sodium.to_hex(await fromB64(input));
}
export async function fromHex(input: string) {
await sodium.ready;
return await toB64(sodium.from_hex(input));
}
/**
* If the provided {@link bob} ("Bytes or B64 string") is already a
* {@link Uint8Array}, return it unchanged, otherwise convert the base64 string
* into bytes and return those.
*/
const bytes = async (bob: BytesOrB64) =>
typeof bob == "string" ? fromB64(bob) : bob;
/**
* Generate a key for use with the *Box encryption functions.
*
* This returns a new randomly generated 256-bit key suitable for being used
* with libsodium's secretbox APIs.
*/
export const generateNewBoxKey = async () => {
await sodium.ready;
return toB64(sodium.crypto_secretbox_keygen());
};
/**
* Generate a key for use with the *Blob or *Stream encryption functions.
*
* This returns a new randomly generated 256-bit key suitable for being used
* with libsodium's secretstream APIs.
*/
export const generateNewBlobOrStreamKey = async () => {
await sodium.ready;
return toB64(sodium.crypto_secretstream_xchacha20poly1305_keygen());
};
/**
* Encrypt the given data using libsodium's secretbox APIs, using a randomly
* generated nonce.
*
* Use {@link decryptBox} to decrypt the result.
*
* @param data The data to encrypt.
*
* @param key The key to use for encryption.
*
* @returns The encrypted data and the generated nonce, both as base64 strings.
*
* [Note: 3 forms of encryption (Box | Blob | Stream)]
*
* libsodium provides two "high level" encryption patterns:
*
* 1. Authenticated encryption ("secretbox")
* https://doc.libsodium.org/secret-key_cryptography/secretbox
*
* 2. Encrypted streams and file encryption ("secretstream")
* https://doc.libsodium.org/secret-key_cryptography/secretstream
*
* In terms of the underlying algorithm, they are essentially the same.
*
* 1. The secretbox APIs use XSalsa20 with Poly1305 (where XSalsa20 is the
* stream cipher used for encryption, which Poly1305 is the MAC used for
* authentication).
*
* 2. The secretstream APIs use XChaCha20 with Poly1305.
*
* XSalsa20 is a minor variant (predecessor in fact) of XChaCha20. I am not
* aware why libsodium uses both the variants, but they seem to have similar
* characteristics.
*
* These two sets of APIs map functionally map to two different use cases.
*
* 1. If there is a single independent bit of data to encrypt, the secretbox
* APIs fit the bill.
*
* 2. If there is a set of related data to encrypt, e.g. the contents of a file
* where the file is too big to fit into a single message, then the
* secretstream APIs are more appropriate.
*
* However, in our code we have evolved two different use cases for the 2nd
* option.
*
* Say we have an Ente object, specifically an {@link EnteFile}. This holds the
* encryption keys for encrypting the contents of the file that a user wishes to
* upload. The secretstream APIs are the obvious fit, and indeed that's what we
* use, chunking the file if the contents are bigger than some threshold. But if
* the file is small enough, there is no need to chunk, so we also expose a
* function that does streaming encryption, but in "one-shot" mode.
*
* Later on, say we have to encrypt the public magic metadata associated with
* the {@link EnteFile}. Instead of using the secretbox APIs, we just us the
* same streaming encryption that the rest of the file uses, but since such
* metadata is well below the threshold for chunking, it invariably uses the
* "one-shot" mode.
*
* Thus, we have three scenarios:
*
* 1. Box: Using secretbox APIs to encrypt some independent blob of data.
*
* 2. Blob: Using secretstream APIs in one-shot mode. This is used to encrypt
* data associated to an Ente object (file, collection, entity, etc), when
* the data is small-ish (less than a few MBs).
*
* 3. Stream/Chunks: Using secretstream APIs for encrypting chunks. This is
* used to encrypt the actual content of the files associated with an
* EnteFile object.
*
* "Blob" is not a prior term of art in this context, it is just something we
* use to abbreviate "data encrypted using secretstream APIs in one-shot mode".
*
* The distinction between Box and Blob is also handy since not only does the
* underlying algorithm differ, but also the terminology that libsodium use for
* the nonce.
*
* 1. When using the secretbox APIs, the nonce is called the "nonce", and needs
* to be provided by us (the caller).
*
* 2. When using the secretstream APIs, the nonce is internally generated by
* libsodium and provided by libsodium to us (the caller) as a "header".
*
* However, even for case 1, the functions we expose from libsodium.ts generate
* the nonce for the caller. So for higher level functions, the difference
* between Box and Blob encryption is:
*
* 1. Box uses secretbox APIs (Salsa), Blob uses secretstream APIs (ChaCha).
*
* 2. While both are one-shot, Blob should generally be used for data
* associated with an Ente object, and Box for the other cases.
*
* 3. Box returns a "nonce", while Blob returns a "header".
*/
export const encryptBoxB64 = async (
data: BytesOrB64,
key: BytesOrB64,
): Promise<EncryptedBoxB64> => {
await sodium.ready;
const nonce = sodium.randombytes_buf(sodium.crypto_secretbox_NONCEBYTES);
const encryptedData = sodium.crypto_secretbox_easy(
await bytes(data),
nonce,
await bytes(key),
);
return {
encryptedData: await toB64(encryptedData),
nonce: await toB64(nonce),
};
};
/**
* Encrypt the given data using libsodium's secretstream APIs in one-shot mode.
*
* Use {@link decryptBlob} to decrypt the result.
*
* @param data The data to encrypt.
*
* @param key The key to use for encryption.
*
* @returns The encrypted data and the decryption header as {@link Uint8Array}s.
*
* - See: [Note: 3 forms of encryption (Box | Blob | Stream)].
*
* - See: https://doc.libsodium.org/secret-key_cryptography/secretstream
*/
export const encryptBlob = async (
data: BytesOrB64,
key: BytesOrB64,
): Promise<EncryptedBlobBytes> => {
await sodium.ready;
const uintkey = await bytes(key);
const initPushResult =
sodium.crypto_secretstream_xchacha20poly1305_init_push(uintkey);
const [pushState, header] = [initPushResult.state, initPushResult.header];
const pushResult = sodium.crypto_secretstream_xchacha20poly1305_push(
pushState,
await bytes(data),
null,
sodium.crypto_secretstream_xchacha20poly1305_TAG_FINAL,
);
return {
encryptedData: pushResult,
decryptionHeader: header,
};
};
/**
* A variant of {@link encryptBlob} that returns the both the encrypted data and
* decryption header as base64 strings.
*/
export const encryptBlobB64 = async (
data: BytesOrB64,
key: BytesOrB64,
): Promise<EncryptedBlobB64> => {
const { encryptedData, decryptionHeader } = await encryptBlob(data, key);
return {
encryptedData: await toB64(encryptedData),
decryptionHeader: await toB64(decryptionHeader),
};
};
export const ENCRYPTION_CHUNK_SIZE = 4 * 1024 * 1024;
export const encryptChaCha = async (data: Uint8Array) => {
await sodium.ready;
const uintkey: Uint8Array =
sodium.crypto_secretstream_xchacha20poly1305_keygen();
const initPushResult =
sodium.crypto_secretstream_xchacha20poly1305_init_push(uintkey);
const [pushState, header] = [initPushResult.state, initPushResult.header];
let bytesRead = 0;
let tag = sodium.crypto_secretstream_xchacha20poly1305_TAG_MESSAGE;
const encryptedChunks = [];
while (tag !== sodium.crypto_secretstream_xchacha20poly1305_TAG_FINAL) {
let chunkSize = ENCRYPTION_CHUNK_SIZE;
if (bytesRead + chunkSize >= data.length) {
chunkSize = data.length - bytesRead;
tag = sodium.crypto_secretstream_xchacha20poly1305_TAG_FINAL;
}
const buffer = data.slice(bytesRead, bytesRead + chunkSize);
bytesRead += chunkSize;
const pushResult = sodium.crypto_secretstream_xchacha20poly1305_push(
pushState,
buffer,
null,
tag,
);
encryptedChunks.push(pushResult);
}
return {
key: await toB64(uintkey),
file: {
encryptedData: mergeUint8Arrays(encryptedChunks),
decryptionHeader: await toB64(header),
},
};
};
export async function initChunkEncryption() {
await sodium.ready;
const key = sodium.crypto_secretstream_xchacha20poly1305_keygen();
const initPushResult =
sodium.crypto_secretstream_xchacha20poly1305_init_push(key);
const [pushState, header] = [initPushResult.state, initPushResult.header];
return {
key: await toB64(key),
decryptionHeader: await toB64(header),
pushState,
};
}
export async function encryptFileChunk(
data: Uint8Array,
pushState: sodium.StateAddress,
isFinalChunk: boolean,
) {
await sodium.ready;
const tag = isFinalChunk
? sodium.crypto_secretstream_xchacha20poly1305_TAG_FINAL
: sodium.crypto_secretstream_xchacha20poly1305_TAG_MESSAGE;
const pushResult = sodium.crypto_secretstream_xchacha20poly1305_push(
pushState,
data,
null,
tag,
);
return pushResult;
}
/**
* Decrypt the result of {@link encryptBoxB64} and return the decrypted bytes.
*/
export const decryptBox = async (
{ encryptedData, nonce }: EncryptedBox,
key: BytesOrB64,
): Promise<Uint8Array> => {
await sodium.ready;
return sodium.crypto_secretbox_open_easy(
await bytes(encryptedData),
await bytes(nonce),
await bytes(key),
);
};
/**
* Variant of {@link decryptBox} that returns the data as a base64 string.
*/
export const decryptBoxB64 = (
box: EncryptedBox,
key: BytesOrB64,
): Promise<string> => decryptBox(box, key).then(toB64);
/**
* Decrypt the result of {@link encryptBlob} or {@link encryptBlobB64}.
*/
export const decryptBlob = async (
{ encryptedData, decryptionHeader }: EncryptedBlob,
key: BytesOrB64,
): Promise<Uint8Array> => {
await sodium.ready;
const pullState = sodium.crypto_secretstream_xchacha20poly1305_init_pull(
await bytes(decryptionHeader),
await bytes(key),
);
const pullResult = sodium.crypto_secretstream_xchacha20poly1305_pull(
pullState,
await bytes(encryptedData),
null,
);
return pullResult.message;
};
/**
* A variant of {@link decryptBlob} that returns the result as a base64 string.
*/
export const decryptBlobB64 = (
blob: EncryptedBlob,
key: BytesOrB64,
): Promise<string> => decryptBlob(blob, key).then(toB64);
/** Decrypt Stream, but merge the results. */
export const decryptChaCha = async (
data: Uint8Array,
header: Uint8Array,
key: string,
) => {
await sodium.ready;
const pullState = sodium.crypto_secretstream_xchacha20poly1305_init_pull(
header,
await fromB64(key),
);
const decryptionChunkSize =
ENCRYPTION_CHUNK_SIZE +
sodium.crypto_secretstream_xchacha20poly1305_ABYTES;
let bytesRead = 0;
const decryptedChunks = [];
let tag = sodium.crypto_secretstream_xchacha20poly1305_TAG_MESSAGE;
while (tag !== sodium.crypto_secretstream_xchacha20poly1305_TAG_FINAL) {
let chunkSize = decryptionChunkSize;
if (bytesRead + chunkSize > data.length) {
chunkSize = data.length - bytesRead;
}
const buffer = data.slice(bytesRead, bytesRead + chunkSize);
const pullResult = sodium.crypto_secretstream_xchacha20poly1305_pull(
pullState,
buffer,
);
// TODO:
// eslint-disable-next-line @typescript-eslint/no-unnecessary-condition
if (!pullResult.message) {
throw new Error(CustomError.PROCESSING_FAILED);
}
decryptedChunks.push(pullResult.message);
tag = pullResult.tag;
bytesRead += chunkSize;
}
return mergeUint8Arrays(decryptedChunks);
};
export async function initChunkDecryption(header: Uint8Array, key: Uint8Array) {
await sodium.ready;
const pullState = sodium.crypto_secretstream_xchacha20poly1305_init_pull(
header,
key,
);
const decryptionChunkSize =
ENCRYPTION_CHUNK_SIZE +
sodium.crypto_secretstream_xchacha20poly1305_ABYTES;
const tag = sodium.crypto_secretstream_xchacha20poly1305_TAG_MESSAGE;
return { pullState, decryptionChunkSize, tag };
}
export async function decryptFileChunk(
data: Uint8Array,
pullState: StateAddress,
) {
await sodium.ready;
const pullResult = sodium.crypto_secretstream_xchacha20poly1305_pull(
pullState,
data,
);
// TODO:
// eslint-disable-next-line @typescript-eslint/no-unnecessary-condition
if (!pullResult.message) {
throw new Error(CustomError.PROCESSING_FAILED);
}
const newTag = pullResult.tag;
return { decryptedData: pullResult.message, newTag };
}
export interface B64EncryptionResult {
encryptedData: string;
key: string;
nonce: string;
}
/** Deprecated, use {@link encryptBoxB64} instead */
export async function encryptToB64(data: string, keyB64: string) {
await sodium.ready;
const encrypted = await encryptBoxB64(data, keyB64);
return {
encryptedData: encrypted.encryptedData,
key: keyB64,
nonce: encrypted.nonce,
} as B64EncryptionResult;
}
export async function generateKeyAndEncryptToB64(data: string) {
await sodium.ready;
const key = sodium.crypto_secretbox_keygen();
return await encryptToB64(data, await toB64(key));
}
export async function encryptUTF8(data: string, key: string) {
const b64Data = await toB64(await fromUTF8(data));
return await encryptToB64(b64Data, key);
}
/** Deprecated, use {@link decryptBoxB64} instead. */
export async function decryptB64(
encryptedData: string,
nonce: string,
keyB64: string,
) {
return decryptBoxB64({ encryptedData, nonce }, keyB64);
}
/** Deprecated */
export async function decryptToUTF8(
encryptedData: string,
nonce: string,
keyB64: string,
) {
await sodium.ready;
const decrypted = await decryptBox({ encryptedData, nonce }, keyB64);
return sodium.to_string(decrypted);
}
export async function initChunkHashing() {
await sodium.ready;
const hashState = sodium.crypto_generichash_init(
null,
sodium.crypto_generichash_BYTES_MAX,
);
return hashState;
}
export async function hashFileChunk(
hashState: sodium.StateAddress,
chunk: Uint8Array,
) {
await sodium.ready;
sodium.crypto_generichash_update(hashState, chunk);
}
export async function completeChunkHashing(hashState: sodium.StateAddress) {
await sodium.ready;
const hash = sodium.crypto_generichash_final(
hashState,
sodium.crypto_generichash_BYTES_MAX,
);
const hashString = toB64(hash);
return hashString;
}
export async function deriveKey(
passphrase: string,
salt: string,
opsLimit: number,
memLimit: number,
) {
await sodium.ready;
return await toB64(
sodium.crypto_pwhash(
sodium.crypto_secretbox_KEYBYTES,
await fromUTF8(passphrase),
await fromB64(salt),
opsLimit,
memLimit,
sodium.crypto_pwhash_ALG_ARGON2ID13,
),
);
}
export async function deriveSensitiveKey(passphrase: string, salt: string) {
await sodium.ready;
const minMemLimit = sodium.crypto_pwhash_MEMLIMIT_MIN;
let opsLimit = sodium.crypto_pwhash_OPSLIMIT_SENSITIVE;
let memLimit = sodium.crypto_pwhash_MEMLIMIT_SENSITIVE;
while (memLimit > minMemLimit) {
try {
const key = await deriveKey(passphrase, salt, opsLimit, memLimit);
return {
key,
opsLimit,
memLimit,
};
} catch (e) {
opsLimit *= 2;
memLimit /= 2;
}
}
throw new Error("Failed to derive key: Memory limit exceeded");
}
export async function deriveInteractiveKey(passphrase: string, salt: string) {
await sodium.ready;
const key = await toB64(
sodium.crypto_pwhash(
sodium.crypto_secretbox_KEYBYTES,
await fromUTF8(passphrase),
await fromB64(salt),
sodium.crypto_pwhash_OPSLIMIT_INTERACTIVE,
sodium.crypto_pwhash_MEMLIMIT_INTERACTIVE,
sodium.crypto_pwhash_ALG_ARGON2ID13,
),
);
return {
key,
opsLimit: sodium.crypto_pwhash_OPSLIMIT_INTERACTIVE,
memLimit: sodium.crypto_pwhash_MEMLIMIT_INTERACTIVE,
};
}
export async function generateEncryptionKey() {
await sodium.ready;
return await toB64(sodium.crypto_kdf_keygen());
}
export async function generateSaltToDeriveKey() {
await sodium.ready;
return await toB64(sodium.randombytes_buf(sodium.crypto_pwhash_SALTBYTES));
}
/**
* Generate a new public/private keypair, and return their base64
* representations.
*/
export const generateKeyPair = async () => {
await sodium.ready;
const keyPair = sodium.crypto_box_keypair();
return {
publicKey: await toB64(keyPair.publicKey),
privateKey: await toB64(keyPair.privateKey),
};
};
export async function boxSealOpen(
input: string,
publicKey: string,
secretKey: string,
) {
await sodium.ready;
return await toB64(
sodium.crypto_box_seal_open(
await fromB64(input),
await fromB64(publicKey),
await fromB64(secretKey),
),
);
}
export async function boxSeal(input: string, publicKey: string) {
await sodium.ready;
return await toB64(
sodium.crypto_box_seal(await fromB64(input), await fromB64(publicKey)),
);
}
export async function generateSubKey(
key: string,
subKeyLength: number,
subKeyID: number,
context: string,
) {
await sodium.ready;
return await toB64(
sodium.crypto_kdf_derive_from_key(
subKeyLength,
subKeyID,
context,
await fromB64(key),
),
);
}