ente/mobile/lib/utils/image_ml_util.dart
2024-09-08 19:28:06 +02:00

730 lines
24 KiB
Dart

import "dart:async";
import "dart:io" show File, Platform;
import "dart:math" show exp, max, min, pi;
import "dart:typed_data" show Float32List, Uint8List;
import "dart:ui";
import 'package:flutter/painting.dart' as paint show decodeImageFromList;
import "package:heif_converter/heif_converter.dart";
import "package:logging/logging.dart";
import 'package:ml_linalg/linalg.dart';
import "package:photos/models/ml/face/box.dart";
import "package:photos/models/ml/face/dimension.dart";
import 'package:photos/services/machine_learning/face_ml/face_alignment/alignment_result.dart';
import 'package:photos/services/machine_learning/face_ml/face_alignment/similarity_transform.dart';
import 'package:photos/services/machine_learning/face_ml/face_detection/detection.dart';
import 'package:photos/services/machine_learning/face_ml/face_filtering/blur_detection_service.dart';
/// All of the functions in this file are helper functions for using inside an isolate.
/// Don't use them outside of a isolate, unless you are okay with UI jank!!!!
final _logger = Logger("ImageMlUtil");
/// These are 8 bit unsigned integers in range 0-255 for each RGB channel
typedef RGB = (int, int, int);
const gaussianKernelSize = 5;
const gaussianKernelRadius = gaussianKernelSize ~/ 2;
const gaussianSigma = 10.0;
final List<List<double>> gaussianKernel =
create2DGaussianKernel(gaussianKernelSize, gaussianSigma);
const maxKernelSize = gaussianKernelSize;
const maxKernelRadius = maxKernelSize ~/ 2;
Future<(Image, Uint8List)> decodeImageFromPath(String imagePath) async {
try {
final imageData = await File(imagePath).readAsBytes();
final image = await decodeImageFromData(imageData);
final rawRgbaBytes = await _getRawRgbaBytes(image);
return (image, rawRgbaBytes);
} catch (e, s) {
final format = imagePath.split('.').last;
if (Platform.isAndroid) {
_logger.info('Cannot decode $format, converting to JPG on Android');
final String? jpgPath =
await HeifConverter.convert(imagePath, format: 'jpg');
if (jpgPath != null) {
_logger.info('Conversion successful, decoding JPG');
final imageData = await File(jpgPath).readAsBytes();
final image = await decodeImageFromData(imageData);
final rawRgbaBytes = await _getRawRgbaBytes(image);
return (image, rawRgbaBytes);
}
_logger.info('Unable to convert $format to JPG');
}
_logger.severe(
'Error decoding image of format $format (Android: ${Platform.isAndroid})',
e,
s,
);
throw Exception(
'InvalidImageFormatException: Error decoding image of format $format',
);
}
}
/// Decodes [Uint8List] image data to an ui.[Image] object.
Future<Image> decodeImageFromData(Uint8List imageData) async {
// Decoding using flutter paint. This is the fastest and easiest method.
final Image image = await paint.decodeImageFromList(imageData);
return image;
// // Similar decoding as above, but without using flutter paint. This is not faster than the above.
// final Codec codec = await instantiateImageCodecFromBuffer(
// await ImmutableBuffer.fromUint8List(imageData),
// );
// final FrameInfo frameInfo = await codec.getNextFrame();
// return frameInfo.image;
// Decoding using the ImageProvider, same as `image_pixels` package. This is not faster than the above.
// final Completer<Image> completer = Completer<Image>();
// final ImageProvider provider = MemoryImage(imageData);
// final ImageStream stream = provider.resolve(const ImageConfiguration());
// final ImageStreamListener listener =
// ImageStreamListener((ImageInfo info, bool _) {
// completer.complete(info.image);
// });
// stream.addListener(listener);
// final Image image = await completer.future;
// stream.removeListener(listener);
// return image;
}
Future<Uint8List> _getRawRgbaBytes(Image image) async {
return await _getByteDataFromImage(image, format: ImageByteFormat.rawRgba);
}
/// Encodes an [Image] object to a [Uint8List], in the png format.
/// Can be used with `Image.memory()`.
Future<Uint8List> _encodeImageToPng(Image image) async {
return await _getByteDataFromImage(image, format: ImageByteFormat.png);
}
/// Returns the [ByteData] object of the image, in rawRgba format.
///
/// Throws an exception if the image could not be converted to ByteData.
Future<Uint8List> _getByteDataFromImage(
Image image, {
required ImageByteFormat format,
}) async {
final byteData = await image.toByteData(format: format);
if (byteData == null) {
_logger.severe('Failed to get byte data in $format from image');
throw Exception('Failed to get byte data in $format from image');
}
return byteData.buffer.asUint8List();
}
/// Generates a face thumbnail from [imageData] and [faceBoxes].
///
/// Returns a [Uint8List] image, in png format.
Future<List<Uint8List>> generateFaceThumbnailsUsingCanvas(
Uint8List imageData,
List<FaceBox> faceBoxes,
) async {
int i = 0; // Index of the faceBox, initialized here for logging purposes
try {
final Image img = await decodeImageFromData(imageData);
final futureFaceThumbnails = <Future<Uint8List>>[];
for (final faceBox in faceBoxes) {
// Note that the faceBox values are relative to the image size, so we need to convert them to absolute values first
final double xMinAbs = faceBox.x * img.width;
final double yMinAbs = faceBox.y * img.height;
final double widthAbs = faceBox.width * img.width;
final double heightAbs = faceBox.height * img.height;
// Calculate the crop values by adding some padding around the face and making sure it's centered
const regularPadding = 0.4;
const minimumPadding = 0.1;
final num xCrop = (xMinAbs - widthAbs * regularPadding);
final num xOvershoot = min(0, xCrop).abs() / widthAbs;
final num widthCrop = widthAbs * (1 + 2 * regularPadding) -
2 * min(xOvershoot, regularPadding - minimumPadding) * widthAbs;
final num yCrop = (yMinAbs - heightAbs * regularPadding);
final num yOvershoot = min(0, yCrop).abs() / heightAbs;
final num heightCrop = heightAbs * (1 + 2 * regularPadding) -
2 * min(yOvershoot, regularPadding - minimumPadding) * heightAbs;
// Prevent the face from going out of image bounds
final xCropSafe = xCrop.clamp(0, img.width);
final yCropSafe = yCrop.clamp(0, img.height);
final widthCropSafe = widthCrop.clamp(0, img.width - xCropSafe);
final heightCropSafe = heightCrop.clamp(0, img.height - yCropSafe);
futureFaceThumbnails.add(
_cropAndEncodeCanvas(
img,
x: xCropSafe.toDouble(),
y: yCropSafe.toDouble(),
width: widthCropSafe.toDouble(),
height: heightCropSafe.toDouble(),
),
);
i++;
}
final List<Uint8List> faceThumbnails =
await Future.wait(futureFaceThumbnails);
return faceThumbnails;
} catch (e, s) {
_logger.severe(
'Error generating face thumbnails. cropImage problematic input argument: ${faceBoxes[i]}',
e,
s,
);
return [];
}
}
Future<(Float32List, Dimensions)> preprocessImageToFloat32ChannelsFirst(
Image image,
Uint8List rawRgbaBytes, {
required int normalization,
required int requiredWidth,
required int requiredHeight,
RGB Function(num, num, Image, Uint8List) getPixel = _getPixelBilinear,
maintainAspectRatio = true,
}) async {
final normFunction = normalization == 2
? _normalizePixelRange2
: normalization == 1
? _normalizePixelRange1
: _normalizePixelNoRange;
double scaleW = requiredWidth / image.width;
double scaleH = requiredHeight / image.height;
if (maintainAspectRatio) {
final scale =
min(requiredWidth / image.width, requiredHeight / image.height);
scaleW = scale;
scaleH = scale;
}
final scaledWidth = (image.width * scaleW).round().clamp(0, requiredWidth);
final scaledHeight = (image.height * scaleH).round().clamp(0, requiredHeight);
final processedBytes = Float32List(3 * requiredHeight * requiredWidth);
final buffer = Float32List.view(processedBytes.buffer);
int pixelIndex = 0;
final int channelOffsetGreen = requiredHeight * requiredWidth;
final int channelOffsetBlue = 2 * requiredHeight * requiredWidth;
for (var h = 0; h < requiredHeight; h++) {
for (var w = 0; w < requiredWidth; w++) {
late RGB pixel;
if (w >= scaledWidth || h >= scaledHeight) {
pixel = const (114, 114, 114);
} else {
pixel = getPixel(
w / scaleW,
h / scaleH,
image,
rawRgbaBytes,
);
}
buffer[pixelIndex] = normFunction(pixel.$1);
buffer[pixelIndex + channelOffsetGreen] = normFunction(pixel.$2);
buffer[pixelIndex + channelOffsetBlue] = normFunction(pixel.$3);
pixelIndex++;
}
}
return (processedBytes, Dimensions(width: scaledWidth, height: scaledHeight));
}
Future<Float32List> preprocessImageClip(
Image image,
Uint8List rawRgbaBytes,
) async {
const int requiredWidth = 256;
const int requiredHeight = 256;
const int requiredSize = 3 * requiredWidth * requiredHeight;
final scale = max(requiredWidth / image.width, requiredHeight / image.height);
final bool useAntiAlias = scale < 0.8;
final scaledWidth = (image.width * scale).round();
final scaledHeight = (image.height * scale).round();
final widthOffset = max(0, scaledWidth - requiredWidth) / 2;
final heightOffset = max(0, scaledHeight - requiredHeight) / 2;
final processedBytes = Float32List(requiredSize);
final buffer = Float32List.view(processedBytes.buffer);
int pixelIndex = 0;
const int greenOff = requiredHeight * requiredWidth;
const int blueOff = 2 * requiredHeight * requiredWidth;
for (var h = 0 + heightOffset; h < scaledHeight - heightOffset; h++) {
for (var w = 0 + widthOffset; w < scaledWidth - widthOffset; w++) {
final RGB pixel = _getPixelBilinear(
w / scale,
h / scale,
image,
rawRgbaBytes,
antiAlias: useAntiAlias,
);
buffer[pixelIndex] = pixel.$1 / 255;
buffer[pixelIndex + greenOff] = pixel.$2 / 255;
buffer[pixelIndex + blueOff] = pixel.$3 / 255;
pixelIndex++;
}
}
return processedBytes;
}
Future<(Float32List, List<AlignmentResult>, List<bool>, List<double>, Size)>
preprocessToMobileFaceNetFloat32List(
Image image,
Uint8List rawRgbaBytes,
List<FaceDetectionRelative> relativeFaces, {
int width = 112,
int height = 112,
}) async {
final Size originalSize =
Size(image.width.toDouble(), image.height.toDouble());
final List<FaceDetectionAbsolute> absoluteFaces =
relativeToAbsoluteDetections(
relativeDetections: relativeFaces,
imageWidth: image.width,
imageHeight: image.height,
);
final alignedImagesFloat32List =
Float32List(3 * width * height * absoluteFaces.length);
final alignmentResults = <AlignmentResult>[];
final isBlurs = <bool>[];
final blurValues = <double>[];
int alignedImageIndex = 0;
for (final face in absoluteFaces) {
final (alignmentResult, correctlyEstimated) =
SimilarityTransform.estimate(face.allKeypoints);
if (!correctlyEstimated) {
_logger.severe(
'Face alignment failed because not able to estimate SimilarityTransform, for face: $face',
);
throw Exception(
'Face alignment failed because not able to estimate SimilarityTransform',
);
}
alignmentResults.add(alignmentResult);
_warpAffineFloat32List(
image,
rawRgbaBytes,
alignmentResult.affineMatrix,
alignedImagesFloat32List,
alignedImageIndex,
);
final faceGrayMatrix = _createGrayscaleIntMatrixFromNormalized2List(
alignedImagesFloat32List,
alignedImageIndex,
);
alignedImageIndex += 3 * width * height;
final (isBlur, blurValue) =
await BlurDetectionService.predictIsBlurGrayLaplacian(
faceGrayMatrix,
faceDirection: face.getFaceDirection(),
);
isBlurs.add(isBlur);
blurValues.add(blurValue);
}
return (
alignedImagesFloat32List,
alignmentResults,
isBlurs,
blurValues,
originalSize
);
}
/// Reads the pixel color at the specified coordinates.
RGB _readPixelColor(
int x,
int y,
Image image,
Uint8List rgbaBytes,
) {
if (y < 0 || y >= image.height || x < 0 || x >= image.width) {
if (y < -maxKernelRadius ||
y >= image.height + maxKernelRadius ||
x < -maxKernelRadius ||
x >= image.width + maxKernelRadius) {
_logger.severe(
'`readPixelColor`: Invalid pixel coordinates, out of bounds. x: $x, y: $y',
);
}
return const (114, 114, 114);
}
assert(rgbaBytes.lengthInBytes == 4 * image.width * image.height);
final int byteOffset = 4 * (image.width * y + x);
return (
rgbaBytes[byteOffset], // red
rgbaBytes[byteOffset + 1], // green
rgbaBytes[byteOffset + 2] // blue
);
}
RGB _getPixelBlurred(
int x,
int y,
Image image,
Uint8List rgbaBytes,
) {
double r = 0, g = 0, b = 0;
for (int ky = 0; ky < gaussianKernelSize; ky++) {
for (int kx = 0; kx < gaussianKernelSize; kx++) {
final int px = (x - gaussianKernelRadius + kx);
final int py = (y - gaussianKernelRadius + ky);
final RGB pixelRgbTuple = _readPixelColor(px, py, image, rgbaBytes);
final double weight = gaussianKernel[ky][kx];
r += pixelRgbTuple.$1 * weight;
g += pixelRgbTuple.$2 * weight;
b += pixelRgbTuple.$3 * weight;
}
}
return (r.round(), g.round(), b.round());
}
List<List<int>> _createGrayscaleIntMatrixFromNormalized2List(
Float32List imageList,
int startIndex, {
int width = 112,
int height = 112,
}) {
return List.generate(
height,
(y) => List.generate(
width,
(x) {
// 0.299 ∙ Red + 0.587 ∙ Green + 0.114 ∙ Blue
final pixelIndex = startIndex + 3 * (y * width + x);
return (0.299 * _unnormalizePixelRange2(imageList[pixelIndex]) +
0.587 * _unnormalizePixelRange2(imageList[pixelIndex + 1]) +
0.114 * _unnormalizePixelRange2(imageList[pixelIndex + 2]))
.round()
.clamp(0, 255);
// return unnormalizePixelRange2(
// (0.299 * imageList[pixelIndex] +
// 0.587 * imageList[pixelIndex + 1] +
// 0.114 * imageList[pixelIndex + 2]),
// ).round().clamp(0, 255);
},
),
);
}
/// Function normalizes the pixel value to be in range [-1, 1].
///
/// It assumes that the pixel value is originally in range [0, 255]
double _normalizePixelRange2(num pixelValue) {
return (pixelValue / 127.5) - 1;
}
/// Function unnormalizes the pixel value to be in range [0, 255].
///
/// It assumes that the pixel value is originally in range [-1, 1]
int _unnormalizePixelRange2(double pixelValue) {
return ((pixelValue + 1) * 127.5).round().clamp(0, 255);
}
/// Function normalizes the pixel value to be in range [0, 1].
///
/// It assumes that the pixel value is originally in range [0, 255]
double _normalizePixelRange1(num pixelValue) {
return (pixelValue / 255);
}
double _normalizePixelNoRange(num pixelValue) {
return pixelValue.toDouble();
}
Future<Image> _cropImage(
Image image, {
required double x,
required double y,
required double width,
required double height,
}) async {
final recorder = PictureRecorder();
final canvas = Canvas(
recorder,
Rect.fromPoints(
const Offset(0, 0),
Offset(width, height),
),
);
canvas.drawImageRect(
image,
Rect.fromPoints(
Offset(x, y),
Offset(x + width, y + height),
),
Rect.fromPoints(
const Offset(0, 0),
Offset(width, height),
),
Paint()..filterQuality = FilterQuality.medium,
);
final picture = recorder.endRecording();
return picture.toImage(width.toInt(), height.toInt());
}
void _warpAffineFloat32List(
Image inputImage,
Uint8List rawRgbaBytes,
List<List<double>> affineMatrix,
Float32List outputList,
int startIndex, {
int width = 112,
int height = 112,
}) {
if (width != 112 || height != 112) {
throw Exception(
'Width and height must be 112, other transformations are not supported yet.',
);
}
final transformationMatrix = affineMatrix
.map(
(row) => row.map((e) {
if (e != 1.0) {
return e * 112;
} else {
return 1.0;
}
}).toList(),
)
.toList();
final A = Matrix.fromList([
[transformationMatrix[0][0], transformationMatrix[0][1]],
[transformationMatrix[1][0], transformationMatrix[1][1]],
]);
final aInverse = A.inverse();
// final aInverseMinus = aInverse * -1;
final B = Vector.fromList(
[transformationMatrix[0][2], transformationMatrix[1][2]],
);
final b00 = B[0];
final b10 = B[1];
final a00Prime = aInverse[0][0];
final a01Prime = aInverse[0][1];
final a10Prime = aInverse[1][0];
final a11Prime = aInverse[1][1];
for (int yTrans = 0; yTrans < height; ++yTrans) {
for (int xTrans = 0; xTrans < width; ++xTrans) {
// Perform inverse affine transformation (original implementation, intuitive but slow)
// final X = aInverse * (Vector.fromList([xTrans, yTrans]) - B);
// final X = aInverseMinus * (B - [xTrans, yTrans]);
// final xList = X.asFlattenedList;
// num xOrigin = xList[0];
// num yOrigin = xList[1];
// Perform inverse affine transformation (fast implementation, less intuitive)
final num xOrigin = (xTrans - b00) * a00Prime + (yTrans - b10) * a01Prime;
final num yOrigin = (xTrans - b00) * a10Prime + (yTrans - b10) * a11Prime;
final RGB pixel =
_getPixelBicubic(xOrigin, yOrigin, inputImage, rawRgbaBytes);
// Set the new pixel
outputList[startIndex + 3 * (yTrans * width + xTrans)] =
_normalizePixelRange2(pixel.$1);
outputList[startIndex + 3 * (yTrans * width + xTrans) + 1] =
_normalizePixelRange2(pixel.$2);
outputList[startIndex + 3 * (yTrans * width + xTrans) + 2] =
_normalizePixelRange2(pixel.$3);
}
}
}
Future<Uint8List> _cropAndEncodeCanvas(
Image image, {
required double x,
required double y,
required double width,
required double height,
}) async {
final croppedImage = await _cropImage(
image,
x: x,
y: y,
width: width,
height: height,
);
return await _encodeImageToPng(croppedImage);
}
RGB _getPixelBilinear(
num fx,
num fy,
Image image,
Uint8List rawRgbaBytes, {
bool antiAlias = false,
}) {
// Clamp to image boundaries
fx = fx.clamp(0, image.width - 1);
fy = fy.clamp(0, image.height - 1);
// Get the surrounding coordinates and their weights
final int x0 = fx.floor();
final int x1 = fx.ceil();
final int y0 = fy.floor();
final int y1 = fy.ceil();
final dx = fx - x0;
final dy = fy - y0;
final dx1 = 1.0 - dx;
final dy1 = 1.0 - dy;
// Get the original pixels (with gaussian blur if antialias)
final RGB Function(int, int, Image, Uint8List) readPixel =
antiAlias ? _getPixelBlurred : _readPixelColor;
final RGB pixel1 = readPixel(x0, y0, image, rawRgbaBytes);
final RGB pixel2 = readPixel(x1, y0, image, rawRgbaBytes);
final RGB pixel3 = readPixel(x0, y1, image, rawRgbaBytes);
final RGB pixel4 = readPixel(x1, y1, image, rawRgbaBytes);
int bilinear(
num val1,
num val2,
num val3,
num val4,
) =>
(val1 * dx1 * dy1 + val2 * dx * dy1 + val3 * dx1 * dy + val4 * dx * dy)
.round();
// Calculate the weighted sum of pixels
final int r = bilinear(pixel1.$1, pixel2.$1, pixel3.$1, pixel4.$1);
final int g = bilinear(pixel1.$2, pixel2.$2, pixel3.$2, pixel4.$2);
final int b = bilinear(pixel1.$3, pixel2.$3, pixel3.$3, pixel4.$3);
return (r, g, b);
}
/// Get the pixel value using Bicubic Interpolation. Code taken mainly from https://github.com/brendan-duncan/image/blob/6e407612752ffdb90b28cd5863c7f65856349348/lib/src/image/image.dart#L697
RGB _getPixelBicubic(num fx, num fy, Image image, Uint8List rawRgbaBytes) {
fx = fx.clamp(0, image.width - 1);
fy = fy.clamp(0, image.height - 1);
final x = fx.toInt() - (fx >= 0.0 ? 0 : 1);
final px = x - 1;
final nx = x + 1;
final ax = x + 2;
final y = fy.toInt() - (fy >= 0.0 ? 0 : 1);
final py = y - 1;
final ny = y + 1;
final ay = y + 2;
final dx = fx - x;
final dy = fy - y;
num cubic(num dx, num ipp, num icp, num inp, num iap) =>
icp +
0.5 *
(dx * (-ipp + inp) +
dx * dx * (2 * ipp - 5 * icp + 4 * inp - iap) +
dx * dx * dx * (-ipp + 3 * icp - 3 * inp + iap));
final icc = _readPixelColor(x, y, image, rawRgbaBytes);
final ipp =
px < 0 || py < 0 ? icc : _readPixelColor(px, py, image, rawRgbaBytes);
final icp = px < 0 ? icc : _readPixelColor(x, py, image, rawRgbaBytes);
final inp = py < 0 || nx >= image.width
? icc
: _readPixelColor(nx, py, image, rawRgbaBytes);
final iap = ax >= image.width || py < 0
? icc
: _readPixelColor(ax, py, image, rawRgbaBytes);
final ip0 = cubic(dx, ipp.$1, icp.$1, inp.$1, iap.$1);
final ip1 = cubic(dx, ipp.$2, icp.$2, inp.$2, iap.$2);
final ip2 = cubic(dx, ipp.$3, icp.$3, inp.$3, iap.$3);
// final ip3 = cubic(dx, ipp.a, icp.a, inp.a, iap.a);
final ipc = px < 0 ? icc : _readPixelColor(px, y, image, rawRgbaBytes);
final inc =
nx >= image.width ? icc : _readPixelColor(nx, y, image, rawRgbaBytes);
final iac =
ax >= image.width ? icc : _readPixelColor(ax, y, image, rawRgbaBytes);
final ic0 = cubic(dx, ipc.$1, icc.$1, inc.$1, iac.$1);
final ic1 = cubic(dx, ipc.$2, icc.$2, inc.$2, iac.$2);
final ic2 = cubic(dx, ipc.$3, icc.$3, inc.$3, iac.$3);
// final ic3 = cubic(dx, ipc.a, icc.a, inc.a, iac.a);
final ipn = px < 0 || ny >= image.height
? icc
: _readPixelColor(px, ny, image, rawRgbaBytes);
final icn =
ny >= image.height ? icc : _readPixelColor(x, ny, image, rawRgbaBytes);
final inn = nx >= image.width || ny >= image.height
? icc
: _readPixelColor(nx, ny, image, rawRgbaBytes);
final ian = ax >= image.width || ny >= image.height
? icc
: _readPixelColor(ax, ny, image, rawRgbaBytes);
final in0 = cubic(dx, ipn.$1, icn.$1, inn.$1, ian.$1);
final in1 = cubic(dx, ipn.$2, icn.$2, inn.$2, ian.$2);
final in2 = cubic(dx, ipn.$3, icn.$3, inn.$3, ian.$3);
// final in3 = cubic(dx, ipn.a, icn.a, inn.a, ian.a);
final ipa = px < 0 || ay >= image.height
? icc
: _readPixelColor(px, ay, image, rawRgbaBytes);
final ica =
ay >= image.height ? icc : _readPixelColor(x, ay, image, rawRgbaBytes);
final ina = nx >= image.width || ay >= image.height
? icc
: _readPixelColor(nx, ay, image, rawRgbaBytes);
final iaa = ax >= image.width || ay >= image.height
? icc
: _readPixelColor(ax, ay, image, rawRgbaBytes);
final ia0 = cubic(dx, ipa.$1, ica.$1, ina.$1, iaa.$1);
final ia1 = cubic(dx, ipa.$2, ica.$2, ina.$2, iaa.$2);
final ia2 = cubic(dx, ipa.$3, ica.$3, ina.$3, iaa.$3);
// final ia3 = cubic(dx, ipa.a, ica.a, ina.a, iaa.a);
final c0 = cubic(dy, ip0, ic0, in0, ia0).clamp(0, 255).toInt();
final c1 = cubic(dy, ip1, ic1, in1, ia1).clamp(0, 255).toInt();
final c2 = cubic(dy, ip2, ic2, in2, ia2).clamp(0, 255).toInt();
// final c3 = cubic(dy, ip3, ic3, in3, ia3);
return (c0, c1, c2); // (red, green, blue)
}
List<List<double>> create2DGaussianKernel(int size, double sigma) {
final List<List<double>> kernel =
List.generate(size, (_) => List<double>.filled(size, 0));
double sum = 0.0;
final int center = size ~/ 2;
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
final int dx = x - center;
final int dy = y - center;
final double g = (1 / (2 * pi * sigma * sigma)) *
exp(-(dx * dx + dy * dy) / (2 * sigma * sigma));
kernel[y][x] = g;
sum += g;
}
}
// Normalize the kernel
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
kernel[y][x] /= sum;
}
}
return kernel;
}