mirror of
https://github.com/ente-io/ente.git
synced 2025-07-14 02:48:27 +00:00
117 lines
3.7 KiB
Dart
117 lines
3.7 KiB
Dart
import "dart:io" show File;
|
|
|
|
import "package:computer/computer.dart";
|
|
import "package:logging/logging.dart";
|
|
import "package:onnx_dart/onnx_dart.dart";
|
|
import "package:onnxruntime/onnxruntime.dart";
|
|
import "package:photos/services/machine_learning/onnx_env.dart";
|
|
import "package:photos/services/remote_assets_service.dart";
|
|
|
|
abstract class MlModel {
|
|
Logger get logger;
|
|
|
|
String get kModelBucketEndpoint => "https://models.ente.io/";
|
|
|
|
String get modelRemotePath;
|
|
|
|
String get modelName;
|
|
|
|
// isInitialized is used to check if the model is loaded by the ffi based
|
|
// plugin
|
|
bool isInitialized = false;
|
|
|
|
bool isNativePluginInitialized = false;
|
|
int sessionAddress = 0;
|
|
|
|
final computer = Computer.shared();
|
|
|
|
// Initializes the model.
|
|
// If `useEntePlugin` is set to true, the custom plugin is used for initialization.
|
|
// Note: The custom plugin requires a dedicated isolate for loading the model to ensure thread safety and performance isolation.
|
|
// In contrast, the current FFI-based plugin leverages the session memory address for session management, which does not require a dedicated isolate.
|
|
Future<void> loadModel({bool useEntePlugin = false}) async {
|
|
final model = await RemoteAssetsService.instance.getAsset(modelRemotePath);
|
|
if (useEntePlugin) {
|
|
await _loadModelWithEntePlugin(modelName, model.path);
|
|
} else {
|
|
await _loadModelWithFFI(modelName, model.path);
|
|
}
|
|
}
|
|
|
|
Future<void> _loadModelWithEntePlugin(
|
|
String modelName,
|
|
String modelPath,
|
|
) async {
|
|
if (!isNativePluginInitialized) {
|
|
final startTime = DateTime.now();
|
|
logger.info('Initializing $modelName with EntePlugin');
|
|
final OnnxDart plugin = OnnxDart();
|
|
final bool? initResult = await plugin.init(modelName, modelPath);
|
|
isNativePluginInitialized = initResult ?? false;
|
|
if (isNativePluginInitialized) {
|
|
final endTime = DateTime.now();
|
|
logger.info(
|
|
"$modelName loaded via EntePlugin ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch).toString()}ms",
|
|
);
|
|
} else {
|
|
logger.severe("Failed to initialize $modelName with EntePlugin.");
|
|
}
|
|
} else {
|
|
logger.info("$modelName already initialized with Ente Plugin.");
|
|
}
|
|
}
|
|
|
|
Future<void> _loadModelWithFFI(String modelName, String modelPath) async {
|
|
if (!isInitialized) {
|
|
logger.info('Initializing $modelName with FFI');
|
|
final startTime = DateTime.now();
|
|
sessionAddress = await computer.compute(
|
|
_loadModel,
|
|
param: {
|
|
"modelPath": modelPath,
|
|
},
|
|
);
|
|
isInitialized = true;
|
|
final endTime = DateTime.now();
|
|
logger.info(
|
|
"$modelName loaded with FFI, took: ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch).toString()}ms",
|
|
);
|
|
} else {
|
|
logger.info("$modelName already initialized with FFI.");
|
|
}
|
|
}
|
|
|
|
Future<void> release() async {
|
|
if (isInitialized) {
|
|
await computer.compute(_releaseModel, param: {'address': sessionAddress});
|
|
await ONNXEnv.instance.releaseONNX(modelName);
|
|
isInitialized = false;
|
|
sessionAddress = 0;
|
|
}
|
|
}
|
|
|
|
static Future<int> _loadModel(Map args) async {
|
|
final sessionOptions = OrtSessionOptions()
|
|
..setInterOpNumThreads(1)
|
|
..setIntraOpNumThreads(1)
|
|
..setSessionGraphOptimizationLevel(GraphOptimizationLevel.ortEnableAll);
|
|
try {
|
|
final session =
|
|
OrtSession.fromFile(File(args["modelPath"]), sessionOptions);
|
|
return session.address;
|
|
} catch (e) {
|
|
rethrow;
|
|
}
|
|
}
|
|
|
|
static Future<void> _releaseModel(Map args) async {
|
|
final address = args['address'] as int;
|
|
if (address == 0) {
|
|
return;
|
|
}
|
|
final session = OrtSession.fromAddress(address);
|
|
session.release();
|
|
return;
|
|
}
|
|
}
|