ente/mobile/lib/services/machine_learning/ml_indexing_isolate.dart
2024-07-25 21:50:56 +02:00

326 lines
11 KiB
Dart

import "dart:async";
import "dart:isolate";
import "package:dart_ui_isolate/dart_ui_isolate.dart";
import "package:flutter/foundation.dart" show debugPrint, kDebugMode;
import "package:logging/logging.dart";
import "package:photos/core/error-reporting/super_logging.dart";
import 'package:photos/services/machine_learning/face_ml/face_detection/face_detection_service.dart';
import 'package:photos/services/machine_learning/face_ml/face_embedding/face_embedding_service.dart';
import "package:photos/services/machine_learning/ml_model.dart";
import "package:photos/services/machine_learning/ml_models_overview.dart";
import 'package:photos/services/machine_learning/ml_result.dart';
import "package:photos/services/machine_learning/semantic_search/clip/clip_image_encoder.dart";
import "package:photos/utils/ml_util.dart";
import "package:synchronized/synchronized.dart";
enum MLIndexingOperation { analyzeImage, loadModels, releaseModels }
class MLIndexingIsolate {
static final _logger = Logger("MLIndexingIsolate");
Timer? _inactivityTimer;
final Duration _inactivityDuration = const Duration(seconds: 120);
int _activeTasks = 0;
final _functionLock = Lock();
final _initIsolateLock = Lock();
late DartUiIsolate _isolate;
late ReceivePort _receivePort = ReceivePort();
late SendPort _mainSendPort;
bool _isIsolateSpawned = false;
bool shouldPauseIndexingAndClustering = false;
// Singleton pattern
MLIndexingIsolate._privateConstructor();
static final instance = MLIndexingIsolate._privateConstructor();
factory MLIndexingIsolate() => instance;
Future<void> _initIsolate() async {
return _initIsolateLock.synchronized(() async {
if (_isIsolateSpawned) return;
_logger.info("initIsolate called");
_receivePort = ReceivePort();
try {
_isolate = await DartUiIsolate.spawn(
_isolateMain,
_receivePort.sendPort,
);
_mainSendPort = await _receivePort.first as SendPort;
_isIsolateSpawned = true;
_resetInactivityTimer();
_logger.info('initIsolate done');
} catch (e) {
_logger.severe('Could not spawn isolate', e);
_isIsolateSpawned = false;
}
});
}
/// The main execution function of the isolate.
@pragma('vm:entry-point')
static void _isolateMain(SendPort mainSendPort) async {
Logger.root.level = kDebugMode ? Level.ALL : Level.INFO;
Logger.root.onRecord.listen((LogRecord rec) {
debugPrint('[MLIsolate] ${rec.toPrettyString()}');
});
final receivePort = ReceivePort();
mainSendPort.send(receivePort.sendPort);
receivePort.listen((message) async {
final functionIndex = message[0] as int;
final function = MLIndexingOperation.values[functionIndex];
final args = message[1] as Map<String, dynamic>;
final sendPort = message[2] as SendPort;
try {
switch (function) {
case MLIndexingOperation.analyzeImage:
final time = DateTime.now();
final MLResult result = await analyzeImageStatic(args);
_logger.info(
"`analyzeImageSync` function executed in ${DateTime.now().difference(time).inMilliseconds} ms",
);
sendPort.send(result.toJsonString());
break;
case MLIndexingOperation.loadModels:
final modelNames = args['modelNames'] as List<String>;
final modelPaths = args['modelPaths'] as List<String>;
final addresses = <int>[];
for (int i = 0; i < modelNames.length; i++) {
final int address = await MlModel.loadModel(
modelNames[i],
modelPaths[i],
);
addresses.add(address);
}
sendPort.send(List.from(addresses, growable: false));
break;
case MLIndexingOperation.releaseModels:
final modelNames = args['modelNames'] as List<String>;
final modelAddresses = args['modelAddresses'] as List<int>;
for (int i = 0; i < modelNames.length; i++) {
await MlModel.releaseModel(
modelNames[i],
modelAddresses[i],
);
}
sendPort.send(true);
break;
}
} catch (e, s) {
_logger.severe("Error in FaceML isolate", e, s);
sendPort.send({'error': e.toString(), 'stackTrace': s.toString()});
}
});
}
/// The common method to run any operation in the isolate. It sends the [message] to [_isolateMain] and waits for the result.
Future<dynamic> _runInIsolate(
(MLIndexingOperation, Map<String, dynamic>) message,
) async {
await _initIsolate();
return _functionLock.synchronized(() async {
_resetInactivityTimer();
if (message.$1 == MLIndexingOperation.analyzeImage &&
shouldPauseIndexingAndClustering) {
return null;
}
final completer = Completer<dynamic>();
final answerPort = ReceivePort();
_activeTasks++;
_mainSendPort.send([message.$1.index, message.$2, answerPort.sendPort]);
answerPort.listen((receivedMessage) {
if (receivedMessage is Map && receivedMessage.containsKey('error')) {
// Handle the error
final errorMessage = receivedMessage['error'];
final errorStackTrace = receivedMessage['stackTrace'];
final exception = Exception(errorMessage);
final stackTrace = StackTrace.fromString(errorStackTrace);
completer.completeError(exception, stackTrace);
} else {
completer.complete(receivedMessage);
}
});
_activeTasks--;
return completer.future;
});
}
/// Resets a timer that kills the isolate after a certain amount of inactivity.
///
/// Should be called after initialization (e.g. inside `init()`) and after every call to isolate (e.g. inside `_runInIsolate()`)
void _resetInactivityTimer() {
_inactivityTimer?.cancel();
_inactivityTimer = Timer(_inactivityDuration, () {
if (_activeTasks > 0) {
_logger.info('Tasks are still running. Delaying isolate disposal.');
// Optionally, reschedule the timer to check again later.
_resetInactivityTimer();
} else {
_logger.info(
'Clustering Isolate has been inactive for ${_inactivityDuration.inSeconds} seconds with no tasks running. Killing isolate.',
);
_dispose();
}
});
}
void _dispose() async {
if (!_isIsolateSpawned) return;
_logger.info('Disposing isolate and models');
await _releaseModels();
_isIsolateSpawned = false;
_isolate.kill();
_receivePort.close();
_inactivityTimer?.cancel();
}
/// Analyzes the given image data by running the full pipeline for faces, using [_analyzeImageSync] in the isolate.
Future<MLResult?> analyzeImage(
FileMLInstruction instruction,
) async {
final String filePath = await getImagePathForML(instruction.enteFile);
final Stopwatch stopwatch = Stopwatch()..start();
late MLResult result;
try {
final resultJsonString = await _runInIsolate(
(
MLIndexingOperation.analyzeImage,
{
"enteFileID": instruction.enteFile.uploadedFileID ?? -1,
"filePath": filePath,
"runFaces": instruction.shouldRunFaces,
"runClip": instruction.shouldRunClip,
"faceDetectionAddress":
FaceDetectionService.instance.sessionAddress,
"faceEmbeddingAddress":
FaceEmbeddingService.instance.sessionAddress,
"clipImageAddress": ClipImageEncoder.instance.sessionAddress,
}
),
) as String?;
if (resultJsonString == null) {
if (!shouldPauseIndexingAndClustering) {
_logger.severe('Analyzing image in isolate is giving back null');
}
return null;
}
result = MLResult.fromJsonString(resultJsonString);
} catch (e, s) {
_logger.severe(
"Could not analyze image with ID ${instruction.enteFile.uploadedFileID} \n",
e,
s,
);
debugPrint(
"This image with ID ${instruction.enteFile.uploadedFileID} has name ${instruction.enteFile.displayName}.",
);
final resultBuilder =
MLResult.fromEnteFileID(instruction.enteFile.uploadedFileID!)
..errorOccurred();
return resultBuilder;
}
stopwatch.stop();
_logger.info(
"Finished Analyze image with uploadedFileID ${instruction.enteFile.uploadedFileID}, in "
"${stopwatch.elapsedMilliseconds} ms (including time waiting for inference engine availability)",
);
return result;
}
Future<void> loadModels({
required bool loadFaces,
required bool loadClip,
}) async {
if (!loadFaces && !loadClip) return;
final List<MLModels> models = [];
final List<String> modelNames = [];
final List<String> modelPaths = [];
if (loadFaces) {
models.addAll([MLModels.faceDetection, MLModels.faceEmbedding]);
final faceDetection =
await FaceDetectionService.instance.getModelNameAndPath();
modelNames.add(faceDetection.$1);
modelPaths.add(faceDetection.$2);
final faceEmbedding =
await FaceEmbeddingService.instance.getModelNameAndPath();
modelNames.add(faceEmbedding.$1);
modelPaths.add(faceEmbedding.$2);
}
if (loadClip) {
models.add(MLModels.clipImageEncoder);
final clipImage = await ClipImageEncoder.instance.getModelNameAndPath();
modelNames.add(clipImage.$1);
modelPaths.add(clipImage.$2);
}
try {
final addresses = await _runInIsolate(
(
MLIndexingOperation.loadModels,
{
"modelNames": modelNames,
"modelPaths": modelPaths,
}
),
) as List<int>;
for (int i = 0; i < models.length; i++) {
final model = models[i].model;
final address = addresses[i];
model.storeSessionAddress(address);
}
} catch (e, s) {
_logger.severe("Could not load models in MLIndexingIsolate", e, s);
rethrow;
}
}
Future<void> _releaseModels() async {
final List<String> modelNames = [];
final List<int> modelAddresses = [];
final List<MLModels> models = [];
for (final model in MLModels.values) {
if (!model.isIndexingModel) continue;
final mlModel = model.model;
if (mlModel.isInitialized) {
models.add(model);
modelNames.add(mlModel.modelName);
modelAddresses.add(mlModel.sessionAddress);
}
}
if (modelNames.isEmpty) return;
try {
await _runInIsolate(
(
MLIndexingOperation.releaseModels,
{
"modelNames": modelNames,
"modelAddresses": modelAddresses,
}
),
);
for (final model in models) {
model.model.releaseSessionAddress();
}
_logger.info("Indexing models released in isolate");
} catch (e, s) {
_logger.severe("Could not release models in MLIndexingIsolate", e, s);
rethrow;
}
}
}