mirror of
https://github.com/ente-io/ente.git
synced 2025-05-03 04:11:28 +00:00
326 lines
11 KiB
Dart
326 lines
11 KiB
Dart
import "dart:async";
|
|
import "dart:isolate";
|
|
|
|
import "package:dart_ui_isolate/dart_ui_isolate.dart";
|
|
import "package:flutter/foundation.dart" show debugPrint, kDebugMode;
|
|
import "package:logging/logging.dart";
|
|
import "package:photos/core/error-reporting/super_logging.dart";
|
|
import 'package:photos/services/machine_learning/face_ml/face_detection/face_detection_service.dart';
|
|
import 'package:photos/services/machine_learning/face_ml/face_embedding/face_embedding_service.dart';
|
|
import "package:photos/services/machine_learning/ml_model.dart";
|
|
import "package:photos/services/machine_learning/ml_models_overview.dart";
|
|
import 'package:photos/services/machine_learning/ml_result.dart';
|
|
import "package:photos/services/machine_learning/semantic_search/clip/clip_image_encoder.dart";
|
|
import "package:photos/utils/ml_util.dart";
|
|
import "package:synchronized/synchronized.dart";
|
|
|
|
enum MLIndexingOperation { analyzeImage, loadModels, releaseModels }
|
|
|
|
class MLIndexingIsolate {
|
|
static final _logger = Logger("MLIndexingIsolate");
|
|
|
|
Timer? _inactivityTimer;
|
|
final Duration _inactivityDuration = const Duration(seconds: 120);
|
|
int _activeTasks = 0;
|
|
|
|
final _functionLock = Lock();
|
|
final _initIsolateLock = Lock();
|
|
|
|
late DartUiIsolate _isolate;
|
|
late ReceivePort _receivePort = ReceivePort();
|
|
late SendPort _mainSendPort;
|
|
|
|
bool _isIsolateSpawned = false;
|
|
|
|
bool shouldPauseIndexingAndClustering = false;
|
|
|
|
// Singleton pattern
|
|
MLIndexingIsolate._privateConstructor();
|
|
static final instance = MLIndexingIsolate._privateConstructor();
|
|
factory MLIndexingIsolate() => instance;
|
|
|
|
Future<void> _initIsolate() async {
|
|
return _initIsolateLock.synchronized(() async {
|
|
if (_isIsolateSpawned) return;
|
|
_logger.info("initIsolate called");
|
|
|
|
_receivePort = ReceivePort();
|
|
|
|
try {
|
|
_isolate = await DartUiIsolate.spawn(
|
|
_isolateMain,
|
|
_receivePort.sendPort,
|
|
);
|
|
_mainSendPort = await _receivePort.first as SendPort;
|
|
_isIsolateSpawned = true;
|
|
|
|
_resetInactivityTimer();
|
|
_logger.info('initIsolate done');
|
|
} catch (e) {
|
|
_logger.severe('Could not spawn isolate', e);
|
|
_isIsolateSpawned = false;
|
|
}
|
|
});
|
|
}
|
|
|
|
/// The main execution function of the isolate.
|
|
@pragma('vm:entry-point')
|
|
static void _isolateMain(SendPort mainSendPort) async {
|
|
Logger.root.level = kDebugMode ? Level.ALL : Level.INFO;
|
|
Logger.root.onRecord.listen((LogRecord rec) {
|
|
debugPrint('[MLIsolate] ${rec.toPrettyString()}');
|
|
});
|
|
final receivePort = ReceivePort();
|
|
mainSendPort.send(receivePort.sendPort);
|
|
receivePort.listen((message) async {
|
|
final functionIndex = message[0] as int;
|
|
final function = MLIndexingOperation.values[functionIndex];
|
|
final args = message[1] as Map<String, dynamic>;
|
|
final sendPort = message[2] as SendPort;
|
|
|
|
try {
|
|
switch (function) {
|
|
case MLIndexingOperation.analyzeImage:
|
|
final time = DateTime.now();
|
|
final MLResult result = await analyzeImageStatic(args);
|
|
_logger.info(
|
|
"`analyzeImageSync` function executed in ${DateTime.now().difference(time).inMilliseconds} ms",
|
|
);
|
|
sendPort.send(result.toJsonString());
|
|
break;
|
|
case MLIndexingOperation.loadModels:
|
|
final modelNames = args['modelNames'] as List<String>;
|
|
final modelPaths = args['modelPaths'] as List<String>;
|
|
final addresses = <int>[];
|
|
for (int i = 0; i < modelNames.length; i++) {
|
|
final int address = await MlModel.loadModel(
|
|
modelNames[i],
|
|
modelPaths[i],
|
|
);
|
|
addresses.add(address);
|
|
}
|
|
sendPort.send(List.from(addresses, growable: false));
|
|
break;
|
|
case MLIndexingOperation.releaseModels:
|
|
final modelNames = args['modelNames'] as List<String>;
|
|
final modelAddresses = args['modelAddresses'] as List<int>;
|
|
for (int i = 0; i < modelNames.length; i++) {
|
|
await MlModel.releaseModel(
|
|
modelNames[i],
|
|
modelAddresses[i],
|
|
);
|
|
}
|
|
sendPort.send(true);
|
|
break;
|
|
}
|
|
} catch (e, s) {
|
|
_logger.severe("Error in FaceML isolate", e, s);
|
|
sendPort.send({'error': e.toString(), 'stackTrace': s.toString()});
|
|
}
|
|
});
|
|
}
|
|
|
|
/// The common method to run any operation in the isolate. It sends the [message] to [_isolateMain] and waits for the result.
|
|
Future<dynamic> _runInIsolate(
|
|
(MLIndexingOperation, Map<String, dynamic>) message,
|
|
) async {
|
|
await _initIsolate();
|
|
return _functionLock.synchronized(() async {
|
|
_resetInactivityTimer();
|
|
|
|
if (message.$1 == MLIndexingOperation.analyzeImage &&
|
|
shouldPauseIndexingAndClustering) {
|
|
return null;
|
|
}
|
|
|
|
final completer = Completer<dynamic>();
|
|
final answerPort = ReceivePort();
|
|
|
|
_activeTasks++;
|
|
_mainSendPort.send([message.$1.index, message.$2, answerPort.sendPort]);
|
|
|
|
answerPort.listen((receivedMessage) {
|
|
if (receivedMessage is Map && receivedMessage.containsKey('error')) {
|
|
// Handle the error
|
|
final errorMessage = receivedMessage['error'];
|
|
final errorStackTrace = receivedMessage['stackTrace'];
|
|
final exception = Exception(errorMessage);
|
|
final stackTrace = StackTrace.fromString(errorStackTrace);
|
|
completer.completeError(exception, stackTrace);
|
|
} else {
|
|
completer.complete(receivedMessage);
|
|
}
|
|
});
|
|
_activeTasks--;
|
|
|
|
return completer.future;
|
|
});
|
|
}
|
|
|
|
/// Resets a timer that kills the isolate after a certain amount of inactivity.
|
|
///
|
|
/// Should be called after initialization (e.g. inside `init()`) and after every call to isolate (e.g. inside `_runInIsolate()`)
|
|
void _resetInactivityTimer() {
|
|
_inactivityTimer?.cancel();
|
|
_inactivityTimer = Timer(_inactivityDuration, () {
|
|
if (_activeTasks > 0) {
|
|
_logger.info('Tasks are still running. Delaying isolate disposal.');
|
|
// Optionally, reschedule the timer to check again later.
|
|
_resetInactivityTimer();
|
|
} else {
|
|
_logger.info(
|
|
'Clustering Isolate has been inactive for ${_inactivityDuration.inSeconds} seconds with no tasks running. Killing isolate.',
|
|
);
|
|
_dispose();
|
|
}
|
|
});
|
|
}
|
|
|
|
void _dispose() async {
|
|
if (!_isIsolateSpawned) return;
|
|
_logger.info('Disposing isolate and models');
|
|
await _releaseModels();
|
|
_isIsolateSpawned = false;
|
|
_isolate.kill();
|
|
_receivePort.close();
|
|
_inactivityTimer?.cancel();
|
|
}
|
|
|
|
/// Analyzes the given image data by running the full pipeline for faces, using [_analyzeImageSync] in the isolate.
|
|
Future<MLResult?> analyzeImage(
|
|
FileMLInstruction instruction,
|
|
) async {
|
|
final String filePath = await getImagePathForML(instruction.enteFile);
|
|
|
|
final Stopwatch stopwatch = Stopwatch()..start();
|
|
late MLResult result;
|
|
|
|
try {
|
|
final resultJsonString = await _runInIsolate(
|
|
(
|
|
MLIndexingOperation.analyzeImage,
|
|
{
|
|
"enteFileID": instruction.enteFile.uploadedFileID ?? -1,
|
|
"filePath": filePath,
|
|
"runFaces": instruction.shouldRunFaces,
|
|
"runClip": instruction.shouldRunClip,
|
|
"faceDetectionAddress":
|
|
FaceDetectionService.instance.sessionAddress,
|
|
"faceEmbeddingAddress":
|
|
FaceEmbeddingService.instance.sessionAddress,
|
|
"clipImageAddress": ClipImageEncoder.instance.sessionAddress,
|
|
}
|
|
),
|
|
) as String?;
|
|
if (resultJsonString == null) {
|
|
if (!shouldPauseIndexingAndClustering) {
|
|
_logger.severe('Analyzing image in isolate is giving back null');
|
|
}
|
|
return null;
|
|
}
|
|
result = MLResult.fromJsonString(resultJsonString);
|
|
} catch (e, s) {
|
|
_logger.severe(
|
|
"Could not analyze image with ID ${instruction.enteFile.uploadedFileID} \n",
|
|
e,
|
|
s,
|
|
);
|
|
debugPrint(
|
|
"This image with ID ${instruction.enteFile.uploadedFileID} has name ${instruction.enteFile.displayName}.",
|
|
);
|
|
final resultBuilder =
|
|
MLResult.fromEnteFileID(instruction.enteFile.uploadedFileID!)
|
|
..errorOccurred();
|
|
return resultBuilder;
|
|
}
|
|
stopwatch.stop();
|
|
_logger.info(
|
|
"Finished Analyze image with uploadedFileID ${instruction.enteFile.uploadedFileID}, in "
|
|
"${stopwatch.elapsedMilliseconds} ms (including time waiting for inference engine availability)",
|
|
);
|
|
|
|
return result;
|
|
}
|
|
|
|
Future<void> loadModels({
|
|
required bool loadFaces,
|
|
required bool loadClip,
|
|
}) async {
|
|
if (!loadFaces && !loadClip) return;
|
|
final List<MLModels> models = [];
|
|
final List<String> modelNames = [];
|
|
final List<String> modelPaths = [];
|
|
if (loadFaces) {
|
|
models.addAll([MLModels.faceDetection, MLModels.faceEmbedding]);
|
|
final faceDetection =
|
|
await FaceDetectionService.instance.getModelNameAndPath();
|
|
modelNames.add(faceDetection.$1);
|
|
modelPaths.add(faceDetection.$2);
|
|
final faceEmbedding =
|
|
await FaceEmbeddingService.instance.getModelNameAndPath();
|
|
modelNames.add(faceEmbedding.$1);
|
|
modelPaths.add(faceEmbedding.$2);
|
|
}
|
|
if (loadClip) {
|
|
models.add(MLModels.clipImageEncoder);
|
|
final clipImage = await ClipImageEncoder.instance.getModelNameAndPath();
|
|
modelNames.add(clipImage.$1);
|
|
modelPaths.add(clipImage.$2);
|
|
}
|
|
|
|
try {
|
|
final addresses = await _runInIsolate(
|
|
(
|
|
MLIndexingOperation.loadModels,
|
|
{
|
|
"modelNames": modelNames,
|
|
"modelPaths": modelPaths,
|
|
}
|
|
),
|
|
) as List<int>;
|
|
for (int i = 0; i < models.length; i++) {
|
|
final model = models[i].model;
|
|
final address = addresses[i];
|
|
model.storeSessionAddress(address);
|
|
}
|
|
} catch (e, s) {
|
|
_logger.severe("Could not load models in MLIndexingIsolate", e, s);
|
|
rethrow;
|
|
}
|
|
}
|
|
|
|
Future<void> _releaseModels() async {
|
|
final List<String> modelNames = [];
|
|
final List<int> modelAddresses = [];
|
|
final List<MLModels> models = [];
|
|
for (final model in MLModels.values) {
|
|
if (!model.isIndexingModel) continue;
|
|
final mlModel = model.model;
|
|
if (mlModel.isInitialized) {
|
|
models.add(model);
|
|
modelNames.add(mlModel.modelName);
|
|
modelAddresses.add(mlModel.sessionAddress);
|
|
}
|
|
}
|
|
if (modelNames.isEmpty) return;
|
|
try {
|
|
await _runInIsolate(
|
|
(
|
|
MLIndexingOperation.releaseModels,
|
|
{
|
|
"modelNames": modelNames,
|
|
"modelAddresses": modelAddresses,
|
|
}
|
|
),
|
|
);
|
|
for (final model in models) {
|
|
model.model.releaseSessionAddress();
|
|
}
|
|
_logger.info("Indexing models released in isolate");
|
|
} catch (e, s) {
|
|
_logger.severe("Could not release models in MLIndexingIsolate", e, s);
|
|
rethrow;
|
|
}
|
|
}
|
|
}
|