mirror of
https://github.com/ente-io/ente.git
synced 2025-08-09 07:48:52 +00:00
[mob] merge mobile_face to fix_face_thumbnail
This commit is contained in:
commit
a577611e65
@ -98,7 +98,7 @@ class FaceMLDataDB {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Future<void> updateClusterIdToFaceId(
|
Future<void> updateFaceIdToClusterId(
|
||||||
Map<String, int> faceIDToClusterID,
|
Map<String, int> faceIDToClusterID,
|
||||||
) async {
|
) async {
|
||||||
final db = await instance.database;
|
final db = await instance.database;
|
||||||
@ -146,8 +146,8 @@ class FaceMLDataDB {
|
|||||||
}
|
}
|
||||||
|
|
||||||
Future<Map<int, int>> clusterIdToFaceCount() async {
|
Future<Map<int, int>> clusterIdToFaceCount() async {
|
||||||
final db = await instance.database;
|
final db = await instance.sqliteAsyncDB;
|
||||||
final List<Map<String, dynamic>> maps = await db.rawQuery(
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
'SELECT $fcClusterID, COUNT(*) as count FROM $faceClustersTable where $fcClusterID IS NOT NULL GROUP BY $fcClusterID ',
|
'SELECT $fcClusterID, COUNT(*) as count FROM $faceClustersTable where $fcClusterID IS NOT NULL GROUP BY $fcClusterID ',
|
||||||
);
|
);
|
||||||
final Map<int, int> result = {};
|
final Map<int, int> result = {};
|
||||||
@ -158,15 +158,15 @@ class FaceMLDataDB {
|
|||||||
}
|
}
|
||||||
|
|
||||||
Future<Set<int>> getPersonIgnoredClusters(String personID) async {
|
Future<Set<int>> getPersonIgnoredClusters(String personID) async {
|
||||||
final db = await instance.database;
|
final db = await instance.sqliteAsyncDB;
|
||||||
// find out clusterIds that are assigned to other persons using the clusters table
|
// find out clusterIds that are assigned to other persons using the clusters table
|
||||||
final List<Map<String, dynamic>> maps = await db.rawQuery(
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
'SELECT $clusterIDColumn FROM $clusterPersonTable WHERE $personIdColumn != ? AND $personIdColumn IS NOT NULL',
|
'SELECT $clusterIDColumn FROM $clusterPersonTable WHERE $personIdColumn != ? AND $personIdColumn IS NOT NULL',
|
||||||
[personID],
|
[personID],
|
||||||
);
|
);
|
||||||
final Set<int> ignoredClusterIDs =
|
final Set<int> ignoredClusterIDs =
|
||||||
maps.map((e) => e[clusterIDColumn] as int).toSet();
|
maps.map((e) => e[clusterIDColumn] as int).toSet();
|
||||||
final List<Map<String, dynamic>> rejectMaps = await db.rawQuery(
|
final List<Map<String, dynamic>> rejectMaps = await db.getAll(
|
||||||
'SELECT $clusterIDColumn FROM $notPersonFeedback WHERE $personIdColumn = ?',
|
'SELECT $clusterIDColumn FROM $notPersonFeedback WHERE $personIdColumn = ?',
|
||||||
[personID],
|
[personID],
|
||||||
);
|
);
|
||||||
@ -176,8 +176,8 @@ class FaceMLDataDB {
|
|||||||
}
|
}
|
||||||
|
|
||||||
Future<Set<int>> getPersonClusterIDs(String personID) async {
|
Future<Set<int>> getPersonClusterIDs(String personID) async {
|
||||||
final db = await instance.database;
|
final db = await instance.sqliteAsyncDB;
|
||||||
final List<Map<String, dynamic>> maps = await db.rawQuery(
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
'SELECT $clusterIDColumn FROM $clusterPersonTable WHERE $personIdColumn = ?',
|
'SELECT $clusterIDColumn FROM $clusterPersonTable WHERE $personIdColumn = ?',
|
||||||
[personID],
|
[personID],
|
||||||
);
|
);
|
||||||
@ -197,8 +197,8 @@ class FaceMLDataDB {
|
|||||||
int clusterID, {
|
int clusterID, {
|
||||||
int? limit,
|
int? limit,
|
||||||
}) async {
|
}) async {
|
||||||
final db = await instance.database;
|
final db = await instance.sqliteAsyncDB;
|
||||||
final List<Map<String, dynamic>> maps = await db.rawQuery(
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
'SELECT $faceEmbeddingBlob FROM $facesTable WHERE $faceIDColumn in (SELECT $fcFaceId from $faceClustersTable where $fcClusterID = ?) ${limit != null ? 'LIMIT $limit' : ''}',
|
'SELECT $faceEmbeddingBlob FROM $facesTable WHERE $faceIDColumn in (SELECT $fcFaceId from $faceClustersTable where $fcClusterID = ?) ${limit != null ? 'LIMIT $limit' : ''}',
|
||||||
[clusterID],
|
[clusterID],
|
||||||
);
|
);
|
||||||
@ -209,7 +209,7 @@ class FaceMLDataDB {
|
|||||||
Iterable<int> clusterIDs, {
|
Iterable<int> clusterIDs, {
|
||||||
int? limit,
|
int? limit,
|
||||||
}) async {
|
}) async {
|
||||||
final db = await instance.database;
|
final db = await instance.sqliteAsyncDB;
|
||||||
final Map<int, List<Uint8List>> result = {};
|
final Map<int, List<Uint8List>> result = {};
|
||||||
|
|
||||||
final selectQuery = '''
|
final selectQuery = '''
|
||||||
@ -220,7 +220,7 @@ class FaceMLDataDB {
|
|||||||
${limit != null ? 'LIMIT $limit' : ''}
|
${limit != null ? 'LIMIT $limit' : ''}
|
||||||
''';
|
''';
|
||||||
|
|
||||||
final List<Map<String, dynamic>> maps = await db.rawQuery(selectQuery);
|
final List<Map<String, dynamic>> maps = await db.getAll(selectQuery);
|
||||||
|
|
||||||
for (final map in maps) {
|
for (final map in maps) {
|
||||||
final clusterID = map[fcClusterID] as int;
|
final clusterID = map[fcClusterID] as int;
|
||||||
@ -321,8 +321,8 @@ class FaceMLDataDB {
|
|||||||
}
|
}
|
||||||
|
|
||||||
Future<Face?> getFaceForFaceID(String faceID) async {
|
Future<Face?> getFaceForFaceID(String faceID) async {
|
||||||
final db = await instance.database;
|
final db = await instance.sqliteAsyncDB;
|
||||||
final result = await db.rawQuery(
|
final result = await db.getAll(
|
||||||
'SELECT * FROM $facesTable where $faceIDColumn = ?',
|
'SELECT * FROM $facesTable where $faceIDColumn = ?',
|
||||||
[faceID],
|
[faceID],
|
||||||
);
|
);
|
||||||
@ -332,6 +332,36 @@ class FaceMLDataDB {
|
|||||||
return mapRowToFace(result.first);
|
return mapRowToFace(result.first);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Future<Map<int, Iterable<String>>> getClusterToFaceIDs(
|
||||||
|
Set<int> clusterIDs,
|
||||||
|
) async {
|
||||||
|
final db = await instance.sqliteAsyncDB;
|
||||||
|
final Map<int, List<String>> result = {};
|
||||||
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
|
'SELECT $fcClusterID, $fcFaceId FROM $faceClustersTable WHERE $fcClusterID IN (${clusterIDs.join(",")})',
|
||||||
|
);
|
||||||
|
for (final map in maps) {
|
||||||
|
final clusterID = map[fcClusterID] as int;
|
||||||
|
final faceID = map[fcFaceId] as String;
|
||||||
|
result.putIfAbsent(clusterID, () => <String>[]).add(faceID);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
Future<Map<int, Iterable<String>>> getAllClusterIdToFaceIDs() async {
|
||||||
|
final db = await instance.sqliteAsyncDB;
|
||||||
|
final Map<int, List<String>> result = {};
|
||||||
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
|
'SELECT $fcClusterID, $fcFaceId FROM $faceClustersTable',
|
||||||
|
);
|
||||||
|
for (final map in maps) {
|
||||||
|
final clusterID = map[fcClusterID] as int;
|
||||||
|
final faceID = map[fcFaceId] as String;
|
||||||
|
result.putIfAbsent(clusterID, () => <String>[]).add(faceID);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
Future<Iterable<String>> getFaceIDsForCluster(int clusterID) async {
|
Future<Iterable<String>> getFaceIDsForCluster(int clusterID) async {
|
||||||
final db = await instance.sqliteAsyncDB;
|
final db = await instance.sqliteAsyncDB;
|
||||||
final List<Map<String, dynamic>> maps = await db.getAll(
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
@ -390,8 +420,8 @@ class FaceMLDataDB {
|
|||||||
Future<Map<String, int?>> getFaceIdsToClusterIds(
|
Future<Map<String, int?>> getFaceIdsToClusterIds(
|
||||||
Iterable<String> faceIds,
|
Iterable<String> faceIds,
|
||||||
) async {
|
) async {
|
||||||
final db = await instance.database;
|
final db = await instance.sqliteAsyncDB;
|
||||||
final List<Map<String, dynamic>> maps = await db.rawQuery(
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
'SELECT $fcFaceId, $fcClusterID FROM $faceClustersTable where $fcFaceId IN (${faceIds.map((id) => "'$id'").join(",")})',
|
'SELECT $fcFaceId, $fcClusterID FROM $faceClustersTable where $fcFaceId IN (${faceIds.map((id) => "'$id'").join(",")})',
|
||||||
);
|
);
|
||||||
final Map<String, int?> result = {};
|
final Map<String, int?> result = {};
|
||||||
@ -403,8 +433,8 @@ class FaceMLDataDB {
|
|||||||
|
|
||||||
Future<Map<int, Set<int>>> getFileIdToClusterIds() async {
|
Future<Map<int, Set<int>>> getFileIdToClusterIds() async {
|
||||||
final Map<int, Set<int>> result = {};
|
final Map<int, Set<int>> result = {};
|
||||||
final db = await instance.database;
|
final db = await instance.sqliteAsyncDB;
|
||||||
final List<Map<String, dynamic>> maps = await db.rawQuery(
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
'SELECT $fcClusterID, $fcFaceId FROM $faceClustersTable',
|
'SELECT $fcClusterID, $fcFaceId FROM $faceClustersTable',
|
||||||
);
|
);
|
||||||
|
|
||||||
@ -761,9 +791,9 @@ class FaceMLDataDB {
|
|||||||
|
|
||||||
// for a given personID, return a map of clusterID to fileIDs using join query
|
// for a given personID, return a map of clusterID to fileIDs using join query
|
||||||
Future<Map<int, Set<int>>> getFileIdToClusterIDSet(String personID) {
|
Future<Map<int, Set<int>>> getFileIdToClusterIDSet(String personID) {
|
||||||
final db = instance.database;
|
final db = instance.sqliteAsyncDB;
|
||||||
return db.then((db) async {
|
return db.then((db) async {
|
||||||
final List<Map<String, dynamic>> maps = await db.rawQuery(
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
'SELECT $faceClustersTable.$fcClusterID, $fcFaceId FROM $faceClustersTable '
|
'SELECT $faceClustersTable.$fcClusterID, $fcFaceId FROM $faceClustersTable '
|
||||||
'INNER JOIN $clusterPersonTable '
|
'INNER JOIN $clusterPersonTable '
|
||||||
'ON $faceClustersTable.$fcClusterID = $clusterPersonTable.$clusterIDColumn '
|
'ON $faceClustersTable.$fcClusterID = $clusterPersonTable.$clusterIDColumn '
|
||||||
@ -784,9 +814,9 @@ class FaceMLDataDB {
|
|||||||
Future<Map<int, Set<int>>> getFileIdToClusterIDSetForCluster(
|
Future<Map<int, Set<int>>> getFileIdToClusterIDSetForCluster(
|
||||||
Set<int> clusterIDs,
|
Set<int> clusterIDs,
|
||||||
) {
|
) {
|
||||||
final db = instance.database;
|
final db = instance.sqliteAsyncDB;
|
||||||
return db.then((db) async {
|
return db.then((db) async {
|
||||||
final List<Map<String, dynamic>> maps = await db.rawQuery(
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
'SELECT $fcClusterID, $fcFaceId FROM $faceClustersTable '
|
'SELECT $fcClusterID, $fcFaceId FROM $faceClustersTable '
|
||||||
'WHERE $fcClusterID IN (${clusterIDs.join(",")})',
|
'WHERE $fcClusterID IN (${clusterIDs.join(",")})',
|
||||||
);
|
);
|
||||||
@ -846,9 +876,26 @@ class FaceMLDataDB {
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Future<Map<int, (Uint8List, int)>> getClusterToClusterSummary(
|
||||||
|
Iterable<int> clusterIDs,
|
||||||
|
) async {
|
||||||
|
final db = await instance.sqliteAsyncDB;
|
||||||
|
final Map<int, (Uint8List, int)> result = {};
|
||||||
|
final rows = await db.getAll(
|
||||||
|
'SELECT * FROM $clusterSummaryTable WHERE $clusterIDColumn IN (${clusterIDs.join(",")})',
|
||||||
|
);
|
||||||
|
for (final r in rows) {
|
||||||
|
final id = r[clusterIDColumn] as int;
|
||||||
|
final avg = r[avgColumn] as Uint8List;
|
||||||
|
final count = r[countColumn] as int;
|
||||||
|
result[id] = (avg, count);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
Future<Map<int, String>> getClusterIDToPersonID() async {
|
Future<Map<int, String>> getClusterIDToPersonID() async {
|
||||||
final db = await instance.database;
|
final db = await instance.sqliteAsyncDB;
|
||||||
final List<Map<String, dynamic>> maps = await db.rawQuery(
|
final List<Map<String, dynamic>> maps = await db.getAll(
|
||||||
'SELECT $personIdColumn, $clusterIDColumn FROM $clusterPersonTable',
|
'SELECT $personIdColumn, $clusterIDColumn FROM $clusterPersonTable',
|
||||||
);
|
);
|
||||||
final Map<int, String> result = {};
|
final Map<int, String> result = {};
|
||||||
|
@ -61,7 +61,7 @@ class EntityService {
|
|||||||
}) async {
|
}) async {
|
||||||
final key = await getOrCreateEntityKey(type);
|
final key = await getOrCreateEntityKey(type);
|
||||||
final encryptedKeyData = await CryptoUtil.encryptChaCha(
|
final encryptedKeyData = await CryptoUtil.encryptChaCha(
|
||||||
utf8.encode(plainText) as Uint8List,
|
utf8.encode(plainText),
|
||||||
key,
|
key,
|
||||||
);
|
);
|
||||||
final String encryptedData =
|
final String encryptedData =
|
||||||
|
@ -1,5 +1,18 @@
|
|||||||
import 'dart:math' show sqrt;
|
import 'dart:math' show sqrt;
|
||||||
|
|
||||||
|
import "package:ml_linalg/vector.dart";
|
||||||
|
|
||||||
|
/// Calculates the cosine distance between two embeddings/vectors using SIMD from ml_linalg
|
||||||
|
///
|
||||||
|
/// WARNING: This assumes both vectors are already normalized!
|
||||||
|
double cosineDistanceSIMD(Vector vector1, Vector vector2) {
|
||||||
|
if (vector1.length != vector2.length) {
|
||||||
|
throw ArgumentError('Vectors must be the same length');
|
||||||
|
}
|
||||||
|
|
||||||
|
return 1 - vector1.dot(vector2);
|
||||||
|
}
|
||||||
|
|
||||||
/// Calculates the cosine distance between two embeddings/vectors.
|
/// Calculates the cosine distance between two embeddings/vectors.
|
||||||
///
|
///
|
||||||
/// Throws an ArgumentError if the vectors are of different lengths or
|
/// Throws an ArgumentError if the vectors are of different lengths or
|
||||||
|
@ -69,7 +69,7 @@ class FaceClusteringService {
|
|||||||
bool isRunning = false;
|
bool isRunning = false;
|
||||||
|
|
||||||
static const kRecommendedDistanceThreshold = 0.24;
|
static const kRecommendedDistanceThreshold = 0.24;
|
||||||
static const kConservativeDistanceThreshold = 0.06;
|
static const kConservativeDistanceThreshold = 0.16;
|
||||||
|
|
||||||
// singleton pattern
|
// singleton pattern
|
||||||
FaceClusteringService._privateConstructor();
|
FaceClusteringService._privateConstructor();
|
||||||
@ -560,10 +560,10 @@ class FaceClusteringService {
|
|||||||
for (int j = i - 1; j >= 0; j--) {
|
for (int j = i - 1; j >= 0; j--) {
|
||||||
late double distance;
|
late double distance;
|
||||||
if (sortedFaceInfos[i].vEmbedding != null) {
|
if (sortedFaceInfos[i].vEmbedding != null) {
|
||||||
distance = 1.0 -
|
distance = cosineDistanceSIMD(
|
||||||
sortedFaceInfos[i]
|
sortedFaceInfos[i].vEmbedding!,
|
||||||
.vEmbedding!
|
sortedFaceInfos[j].vEmbedding!,
|
||||||
.dot(sortedFaceInfos[j].vEmbedding!);
|
);
|
||||||
} else {
|
} else {
|
||||||
distance = cosineDistForNormVectors(
|
distance = cosineDistForNormVectors(
|
||||||
sortedFaceInfos[i].embedding!,
|
sortedFaceInfos[i].embedding!,
|
||||||
@ -804,8 +804,10 @@ class FaceClusteringService {
|
|||||||
double closestDistance = double.infinity;
|
double closestDistance = double.infinity;
|
||||||
for (int j = 0; j < totalFaces; j++) {
|
for (int j = 0; j < totalFaces; j++) {
|
||||||
if (i == j) continue;
|
if (i == j) continue;
|
||||||
final double distance =
|
final double distance = cosineDistanceSIMD(
|
||||||
1.0 - faceInfos[i].vEmbedding!.dot(faceInfos[j].vEmbedding!);
|
faceInfos[i].vEmbedding!,
|
||||||
|
faceInfos[j].vEmbedding!,
|
||||||
|
);
|
||||||
if (distance < closestDistance) {
|
if (distance < closestDistance) {
|
||||||
closestDistance = distance;
|
closestDistance = distance;
|
||||||
closestIdx = j;
|
closestIdx = j;
|
||||||
@ -855,10 +857,10 @@ class FaceClusteringService {
|
|||||||
for (int i = 0; i < clusterIds.length; i++) {
|
for (int i = 0; i < clusterIds.length; i++) {
|
||||||
for (int j = 0; j < clusterIds.length; j++) {
|
for (int j = 0; j < clusterIds.length; j++) {
|
||||||
if (i == j) continue;
|
if (i == j) continue;
|
||||||
final double newDistance = 1.0 -
|
final double newDistance = cosineDistanceSIMD(
|
||||||
clusterIdToMeanEmbeddingAndWeight[clusterIds[i]]!.$1.dot(
|
clusterIdToMeanEmbeddingAndWeight[clusterIds[i]]!.$1,
|
||||||
clusterIdToMeanEmbeddingAndWeight[clusterIds[j]]!.$1,
|
clusterIdToMeanEmbeddingAndWeight[clusterIds[j]]!.$1,
|
||||||
);
|
);
|
||||||
if (newDistance < distance) {
|
if (newDistance < distance) {
|
||||||
distance = newDistance;
|
distance = newDistance;
|
||||||
clusterIDsToMerge = (clusterIds[i], clusterIds[j]);
|
clusterIDsToMerge = (clusterIds[i], clusterIds[j]);
|
||||||
@ -959,9 +961,9 @@ class FaceClusteringService {
|
|||||||
|
|
||||||
// Run the DBSCAN clustering
|
// Run the DBSCAN clustering
|
||||||
final List<List<int>> clusterOutput = dbscan.run(embeddings);
|
final List<List<int>> clusterOutput = dbscan.run(embeddings);
|
||||||
final List<List<FaceInfo>> clusteredFaceInfos = clusterOutput
|
// final List<List<FaceInfo>> clusteredFaceInfos = clusterOutput
|
||||||
.map((cluster) => cluster.map((idx) => faceInfos[idx]).toList())
|
// .map((cluster) => cluster.map((idx) => faceInfos[idx]).toList())
|
||||||
.toList();
|
// .toList();
|
||||||
final List<List<String>> clusteredFaceIDs = clusterOutput
|
final List<List<String>> clusteredFaceIDs = clusterOutput
|
||||||
.map((cluster) => cluster.map((idx) => faceInfos[idx].faceID).toList())
|
.map((cluster) => cluster.map((idx) => faceInfos[idx].faceID).toList())
|
||||||
.toList();
|
.toList();
|
||||||
|
@ -1,8 +1,8 @@
|
|||||||
import 'package:photos/services/machine_learning/face_ml/face_detection/face_detection_service.dart';
|
import 'package:photos/services/machine_learning/face_ml/face_detection/face_detection_service.dart';
|
||||||
|
|
||||||
/// Blur detection threshold
|
/// Blur detection threshold
|
||||||
const kLaplacianHardThreshold = 15;
|
const kLaplacianHardThreshold = 10;
|
||||||
const kLaplacianSoftThreshold = 100;
|
const kLaplacianSoftThreshold = 50;
|
||||||
const kLaplacianVerySoftThreshold = 200;
|
const kLaplacianVerySoftThreshold = 200;
|
||||||
|
|
||||||
/// Default blur value
|
/// Default blur value
|
||||||
|
@ -350,7 +350,7 @@ class FaceMlService {
|
|||||||
}
|
}
|
||||||
|
|
||||||
await FaceMLDataDB.instance
|
await FaceMLDataDB.instance
|
||||||
.updateClusterIdToFaceId(clusteringResult.newFaceIdToCluster);
|
.updateFaceIdToClusterId(clusteringResult.newFaceIdToCluster);
|
||||||
await FaceMLDataDB.instance
|
await FaceMLDataDB.instance
|
||||||
.clusterSummaryUpdate(clusteringResult.newClusterSummaries!);
|
.clusterSummaryUpdate(clusteringResult.newClusterSummaries!);
|
||||||
_logger.info(
|
_logger.info(
|
||||||
@ -403,7 +403,7 @@ class FaceMlService {
|
|||||||
'Updating ${clusteringResult.newFaceIdToCluster.length} FaceIDs with clusterIDs in the DB',
|
'Updating ${clusteringResult.newFaceIdToCluster.length} FaceIDs with clusterIDs in the DB',
|
||||||
);
|
);
|
||||||
await FaceMLDataDB.instance
|
await FaceMLDataDB.instance
|
||||||
.updateClusterIdToFaceId(clusteringResult.newFaceIdToCluster);
|
.updateFaceIdToClusterId(clusteringResult.newFaceIdToCluster);
|
||||||
await FaceMLDataDB.instance
|
await FaceMLDataDB.instance
|
||||||
.clusterSummaryUpdate(clusteringResult.newClusterSummaries!);
|
.clusterSummaryUpdate(clusteringResult.newClusterSummaries!);
|
||||||
_logger.info('Done updating FaceIDs with clusterIDs in the DB, in '
|
_logger.info('Done updating FaceIDs with clusterIDs in the DB, in '
|
||||||
|
@ -1,19 +1,18 @@
|
|||||||
import 'dart:developer' as dev;
|
import 'dart:developer' as dev;
|
||||||
import "dart:math" show Random;
|
import "dart:math" show Random, min;
|
||||||
|
|
||||||
import "package:flutter/foundation.dart";
|
import "package:flutter/foundation.dart";
|
||||||
import "package:logging/logging.dart";
|
import "package:logging/logging.dart";
|
||||||
|
import "package:ml_linalg/linalg.dart";
|
||||||
import "package:photos/core/event_bus.dart";
|
import "package:photos/core/event_bus.dart";
|
||||||
import "package:photos/db/files_db.dart";
|
import "package:photos/db/files_db.dart";
|
||||||
// import "package:photos/events/files_updated_event.dart";
|
|
||||||
// import "package:photos/events/local_photos_updated_event.dart";
|
|
||||||
import "package:photos/events/people_changed_event.dart";
|
import "package:photos/events/people_changed_event.dart";
|
||||||
import "package:photos/extensions/stop_watch.dart";
|
import "package:photos/extensions/stop_watch.dart";
|
||||||
import "package:photos/face/db.dart";
|
import "package:photos/face/db.dart";
|
||||||
import "package:photos/face/model/person.dart";
|
import "package:photos/face/model/person.dart";
|
||||||
import "package:photos/generated/protos/ente/common/vector.pb.dart";
|
import "package:photos/generated/protos/ente/common/vector.pb.dart";
|
||||||
import "package:photos/models/file/file.dart";
|
import "package:photos/models/file/file.dart";
|
||||||
import 'package:photos/services/machine_learning/face_ml/face_clustering/cosine_distance.dart';
|
import "package:photos/services/machine_learning/face_ml/face_clustering/cosine_distance.dart";
|
||||||
import "package:photos/services/machine_learning/face_ml/face_clustering/face_clustering_service.dart";
|
import "package:photos/services/machine_learning/face_ml/face_clustering/face_clustering_service.dart";
|
||||||
import "package:photos/services/machine_learning/face_ml/face_filtering/face_filtering_constants.dart";
|
import "package:photos/services/machine_learning/face_ml/face_filtering/face_filtering_constants.dart";
|
||||||
import "package:photos/services/machine_learning/face_ml/face_ml_result.dart";
|
import "package:photos/services/machine_learning/face_ml/face_ml_result.dart";
|
||||||
@ -25,12 +24,14 @@ class ClusterSuggestion {
|
|||||||
final double distancePersonToCluster;
|
final double distancePersonToCluster;
|
||||||
final bool usedOnlyMeanForSuggestion;
|
final bool usedOnlyMeanForSuggestion;
|
||||||
final List<EnteFile> filesInCluster;
|
final List<EnteFile> filesInCluster;
|
||||||
|
final List<String> faceIDsInCluster;
|
||||||
|
|
||||||
ClusterSuggestion(
|
ClusterSuggestion(
|
||||||
this.clusterIDToMerge,
|
this.clusterIDToMerge,
|
||||||
this.distancePersonToCluster,
|
this.distancePersonToCluster,
|
||||||
this.usedOnlyMeanForSuggestion,
|
this.usedOnlyMeanForSuggestion,
|
||||||
this.filesInCluster,
|
this.filesInCluster,
|
||||||
|
this.faceIDsInCluster,
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -60,19 +61,27 @@ class ClusterFeedbackService {
|
|||||||
bool extremeFilesFirst = true,
|
bool extremeFilesFirst = true,
|
||||||
}) async {
|
}) async {
|
||||||
_logger.info(
|
_logger.info(
|
||||||
'getClusterFilesForPersonID ${kDebugMode ? person.data.name : person.remoteID}',
|
'getSuggestionForPerson ${kDebugMode ? person.data.name : person.remoteID}',
|
||||||
);
|
);
|
||||||
|
|
||||||
try {
|
try {
|
||||||
// Get the suggestions for the person using centroids and median
|
// Get the suggestions for the person using centroids and median
|
||||||
final List<(int, double, bool)> suggestClusterIds =
|
final startTime = DateTime.now();
|
||||||
|
final List<(int, double, bool)> foundSuggestions =
|
||||||
await _getSuggestions(person);
|
await _getSuggestions(person);
|
||||||
|
final findSuggestionsTime = DateTime.now();
|
||||||
|
_logger.info(
|
||||||
|
'getSuggestionForPerson `_getSuggestions`: Found ${foundSuggestions.length} suggestions in ${findSuggestionsTime.difference(startTime).inMilliseconds} ms',
|
||||||
|
);
|
||||||
|
|
||||||
// Get the files for the suggestions
|
// Get the files for the suggestions
|
||||||
|
final suggestionClusterIDs = foundSuggestions.map((e) => e.$1).toSet();
|
||||||
final Map<int, Set<int>> fileIdToClusterID =
|
final Map<int, Set<int>> fileIdToClusterID =
|
||||||
await FaceMLDataDB.instance.getFileIdToClusterIDSetForCluster(
|
await FaceMLDataDB.instance.getFileIdToClusterIDSetForCluster(
|
||||||
suggestClusterIds.map((e) => e.$1).toSet(),
|
suggestionClusterIDs,
|
||||||
);
|
);
|
||||||
|
final clusterIdToFaceIDs =
|
||||||
|
await FaceMLDataDB.instance.getClusterToFaceIDs(suggestionClusterIDs);
|
||||||
final Map<int, List<EnteFile>> clusterIDToFiles = {};
|
final Map<int, List<EnteFile>> clusterIDToFiles = {};
|
||||||
final allFiles = await SearchService.instance.getAllFiles();
|
final allFiles = await SearchService.instance.getAllFiles();
|
||||||
for (final f in allFiles) {
|
for (final f in allFiles) {
|
||||||
@ -89,25 +98,31 @@ class ClusterFeedbackService {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
final List<ClusterSuggestion> clusterIdAndFiles = [];
|
final List<ClusterSuggestion> finalSuggestions = [];
|
||||||
for (final clusterSuggestion in suggestClusterIds) {
|
for (final clusterSuggestion in foundSuggestions) {
|
||||||
if (clusterIDToFiles.containsKey(clusterSuggestion.$1)) {
|
if (clusterIDToFiles.containsKey(clusterSuggestion.$1)) {
|
||||||
clusterIdAndFiles.add(
|
finalSuggestions.add(
|
||||||
ClusterSuggestion(
|
ClusterSuggestion(
|
||||||
clusterSuggestion.$1,
|
clusterSuggestion.$1,
|
||||||
clusterSuggestion.$2,
|
clusterSuggestion.$2,
|
||||||
clusterSuggestion.$3,
|
clusterSuggestion.$3,
|
||||||
clusterIDToFiles[clusterSuggestion.$1]!,
|
clusterIDToFiles[clusterSuggestion.$1]!,
|
||||||
|
clusterIdToFaceIDs[clusterSuggestion.$1]!.toList(),
|
||||||
),
|
),
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
final getFilesTime = DateTime.now();
|
||||||
|
|
||||||
|
final sortingStartTime = DateTime.now();
|
||||||
if (extremeFilesFirst) {
|
if (extremeFilesFirst) {
|
||||||
await _sortSuggestionsOnDistanceToPerson(person, clusterIdAndFiles);
|
await _sortSuggestionsOnDistanceToPerson(person, finalSuggestions);
|
||||||
}
|
}
|
||||||
|
_logger.info(
|
||||||
|
'getSuggestionForPerson post-processing suggestions took ${DateTime.now().difference(findSuggestionsTime).inMilliseconds} ms, of which sorting took ${DateTime.now().difference(sortingStartTime).inMilliseconds} ms and getting files took ${getFilesTime.difference(findSuggestionsTime).inMilliseconds} ms',
|
||||||
|
);
|
||||||
|
|
||||||
return clusterIdAndFiles;
|
return finalSuggestions;
|
||||||
} catch (e, s) {
|
} catch (e, s) {
|
||||||
_logger.severe("Error in getClusterFilesForPersonID", e, s);
|
_logger.severe("Error in getClusterFilesForPersonID", e, s);
|
||||||
rethrow;
|
rethrow;
|
||||||
@ -229,13 +244,13 @@ class ClusterFeedbackService {
|
|||||||
final ignoredClusters = await faceMlDb.getPersonIgnoredClusters(p.remoteID);
|
final ignoredClusters = await faceMlDb.getPersonIgnoredClusters(p.remoteID);
|
||||||
final personClusters = await faceMlDb.getPersonClusterIDs(p.remoteID);
|
final personClusters = await faceMlDb.getPersonClusterIDs(p.remoteID);
|
||||||
dev.log(
|
dev.log(
|
||||||
'existing clusters for ${p.data.name} are $personClusters',
|
'${p.data.name} has ${personClusters.length} existing clusters',
|
||||||
name: "ClusterFeedbackService",
|
name: "ClusterFeedbackService",
|
||||||
);
|
);
|
||||||
|
|
||||||
// Get and update the cluster summary to get the avg (centroid) and count
|
// Get and update the cluster summary to get the avg (centroid) and count
|
||||||
final EnteWatch watch = EnteWatch("ClusterFeedbackService")..start();
|
final EnteWatch watch = EnteWatch("ClusterFeedbackService")..start();
|
||||||
final Map<int, List<double>> clusterAvg = await _getUpdateClusterAvg(
|
final Map<int, Vector> clusterAvg = await _getUpdateClusterAvg(
|
||||||
allClusterIdsToCountMap,
|
allClusterIdsToCountMap,
|
||||||
ignoredClusters,
|
ignoredClusters,
|
||||||
);
|
);
|
||||||
@ -397,7 +412,7 @@ class ClusterFeedbackService {
|
|||||||
final newClusterID = startClusterID + blurValue ~/ 10;
|
final newClusterID = startClusterID + blurValue ~/ 10;
|
||||||
faceIdToCluster[faceID] = newClusterID;
|
faceIdToCluster[faceID] = newClusterID;
|
||||||
}
|
}
|
||||||
await FaceMLDataDB.instance.updateClusterIdToFaceId(faceIdToCluster);
|
await FaceMLDataDB.instance.updateFaceIdToClusterId(faceIdToCluster);
|
||||||
|
|
||||||
Bus.instance.fire(PeopleChangedEvent());
|
Bus.instance.fire(PeopleChangedEvent());
|
||||||
} catch (e, s) {
|
} catch (e, s) {
|
||||||
@ -437,69 +452,81 @@ class ClusterFeedbackService {
|
|||||||
Future<List<(int, double, bool)>> _getSuggestions(
|
Future<List<(int, double, bool)>> _getSuggestions(
|
||||||
PersonEntity p, {
|
PersonEntity p, {
|
||||||
int sampleSize = 50,
|
int sampleSize = 50,
|
||||||
double maxMedianDistance = 0.65,
|
double maxMedianDistance = 0.62,
|
||||||
double goodMedianDistance = 0.55,
|
double goodMedianDistance = 0.55,
|
||||||
double maxMeanDistance = 0.65,
|
double maxMeanDistance = 0.65,
|
||||||
double goodMeanDistance = 0.5,
|
double goodMeanDistance = 0.50,
|
||||||
}) async {
|
}) async {
|
||||||
|
final w = (kDebugMode ? EnteWatch('getSuggestions') : null)?..start();
|
||||||
// Get all the cluster data
|
// Get all the cluster data
|
||||||
final startTime = DateTime.now();
|
|
||||||
final faceMlDb = FaceMLDataDB.instance;
|
final faceMlDb = FaceMLDataDB.instance;
|
||||||
// final Map<int, List<(int, double)>> suggestions = {};
|
|
||||||
final allClusterIdsToCountMap = await faceMlDb.clusterIdToFaceCount();
|
final allClusterIdsToCountMap = await faceMlDb.clusterIdToFaceCount();
|
||||||
final ignoredClusters = await faceMlDb.getPersonIgnoredClusters(p.remoteID);
|
final ignoredClusters = await faceMlDb.getPersonIgnoredClusters(p.remoteID);
|
||||||
final personClusters = await faceMlDb.getPersonClusterIDs(p.remoteID);
|
final personClusters = await faceMlDb.getPersonClusterIDs(p.remoteID);
|
||||||
dev.log(
|
final personFaceIDs =
|
||||||
'existing clusters for ${p.data.name} are $personClusters, getting all database data took ${DateTime.now().difference(startTime).inMilliseconds} ms',
|
await FaceMLDataDB.instance.getFaceIDsForPerson(p.remoteID);
|
||||||
name: "getSuggestionsUsingMedian",
|
final personFileIDs = personFaceIDs.map(getFileIdFromFaceId).toSet();
|
||||||
|
w?.log(
|
||||||
|
'${p.data.name} has ${personClusters.length} existing clusters, getting all database data done',
|
||||||
);
|
);
|
||||||
|
final allClusterIdToFaceIDs =
|
||||||
|
await FaceMLDataDB.instance.getAllClusterIdToFaceIDs();
|
||||||
|
w?.log('getAllClusterIdToFaceIDs done');
|
||||||
|
|
||||||
// First only do a simple check on the big clusters
|
// First only do a simple check on the big clusters, if the person does not have small clusters yet
|
||||||
final EnteWatch watch = EnteWatch("ClusterFeedbackService")..start();
|
final smallestPersonClusterSize = personClusters
|
||||||
final Map<int, List<double>> clusterAvgBigClusters =
|
.map((clusterID) => allClusterIdsToCountMap[clusterID] ?? 0)
|
||||||
await _getUpdateClusterAvg(
|
.reduce((value, element) => min(value, element));
|
||||||
allClusterIdsToCountMap,
|
final checkSizes = [20, kMinimumClusterSizeSearchResult, 10, 5, 1];
|
||||||
ignoredClusters,
|
late Map<int, Vector> clusterAvgBigClusters;
|
||||||
minClusterSize: kMinimumClusterSizeSearchResult,
|
final List<(int, double)> suggestionsMean = [];
|
||||||
);
|
for (final minimumSize in checkSizes.toSet()) {
|
||||||
dev.log(
|
// if (smallestPersonClusterSize >= minimumSize) {
|
||||||
'computed avg for ${clusterAvgBigClusters.length} clusters, in ${DateTime.now().difference(startTime).inMilliseconds} ms',
|
clusterAvgBigClusters = await _getUpdateClusterAvg(
|
||||||
);
|
allClusterIdsToCountMap,
|
||||||
final List<(int, double)> suggestionsMeanBigClusters = _calcSuggestionsMean(
|
ignoredClusters,
|
||||||
clusterAvgBigClusters,
|
minClusterSize: minimumSize,
|
||||||
personClusters,
|
);
|
||||||
ignoredClusters,
|
w?.log(
|
||||||
goodMeanDistance,
|
'Calculate avg for ${clusterAvgBigClusters.length} clusters of min size $minimumSize',
|
||||||
);
|
);
|
||||||
if (suggestionsMeanBigClusters.isNotEmpty) {
|
final List<(int, double)> suggestionsMeanBigClusters =
|
||||||
return suggestionsMeanBigClusters
|
_calcSuggestionsMean(
|
||||||
.map((e) => (e.$1, e.$2, true))
|
clusterAvgBigClusters,
|
||||||
.toList(growable: false);
|
personClusters,
|
||||||
}
|
ignoredClusters,
|
||||||
|
goodMeanDistance,
|
||||||
// Get and update the cluster summary to get the avg (centroid) and count
|
);
|
||||||
final Map<int, List<double>> clusterAvg = await _getUpdateClusterAvg(
|
w?.log(
|
||||||
allClusterIdsToCountMap,
|
'Calculate suggestions using mean for ${clusterAvgBigClusters.length} clusters of min size $minimumSize',
|
||||||
ignoredClusters,
|
);
|
||||||
);
|
for (final suggestion in suggestionsMeanBigClusters) {
|
||||||
dev.log(
|
// Skip suggestions that have a high overlap with the person's files
|
||||||
'computed avg for ${clusterAvg.length} clusters, in ${DateTime.now().difference(startTime).inMilliseconds} ms',
|
final suggestionSet = allClusterIdToFaceIDs[suggestion.$1]!
|
||||||
);
|
.map((faceID) => getFileIdFromFaceId(faceID))
|
||||||
|
.toSet();
|
||||||
// Find the other cluster candidates based on the mean
|
final overlap = personFileIDs.intersection(suggestionSet);
|
||||||
final List<(int, double)> suggestionsMean = _calcSuggestionsMean(
|
if (overlap.isNotEmpty &&
|
||||||
clusterAvg,
|
((overlap.length / suggestionSet.length) > 0.5)) {
|
||||||
personClusters,
|
await FaceMLDataDB.instance.captureNotPersonFeedback(
|
||||||
ignoredClusters,
|
personID: p.remoteID,
|
||||||
goodMeanDistance,
|
clusterID: suggestion.$1,
|
||||||
);
|
);
|
||||||
if (suggestionsMean.isNotEmpty) {
|
continue;
|
||||||
return suggestionsMean
|
}
|
||||||
.map((e) => (e.$1, e.$2, true))
|
suggestionsMean.add(suggestion);
|
||||||
.toList(growable: false);
|
}
|
||||||
|
if (suggestionsMean.isNotEmpty) {
|
||||||
|
return suggestionsMean
|
||||||
|
.map((e) => (e.$1, e.$2, true))
|
||||||
|
.toList(growable: false);
|
||||||
|
// }
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
w?.reset();
|
||||||
|
|
||||||
// Find the other cluster candidates based on the median
|
// Find the other cluster candidates based on the median
|
||||||
|
final clusterAvg = clusterAvgBigClusters;
|
||||||
final List<(int, double)> moreSuggestionsMean = _calcSuggestionsMean(
|
final List<(int, double)> moreSuggestionsMean = _calcSuggestionsMean(
|
||||||
clusterAvg,
|
clusterAvg,
|
||||||
personClusters,
|
personClusters,
|
||||||
@ -522,21 +549,26 @@ class ClusterFeedbackService {
|
|||||||
"Found potential suggestions from loose mean for median test: $otherClusterIdsCandidates",
|
"Found potential suggestions from loose mean for median test: $otherClusterIdsCandidates",
|
||||||
);
|
);
|
||||||
|
|
||||||
watch.logAndReset("Starting median test");
|
w?.logAndReset("Starting median test");
|
||||||
// Take the embeddings from the person's clusters in one big list and sample from it
|
// Take the embeddings from the person's clusters in one big list and sample from it
|
||||||
final List<Uint8List> personEmbeddingsProto = [];
|
final List<Uint8List> personEmbeddingsProto = [];
|
||||||
for (final clusterID in personClusters) {
|
for (final clusterID in personClusters) {
|
||||||
final Iterable<Uint8List> embedings =
|
final Iterable<Uint8List> embeddings =
|
||||||
await FaceMLDataDB.instance.getFaceEmbeddingsForCluster(clusterID);
|
await FaceMLDataDB.instance.getFaceEmbeddingsForCluster(clusterID);
|
||||||
personEmbeddingsProto.addAll(embedings);
|
personEmbeddingsProto.addAll(embeddings);
|
||||||
}
|
}
|
||||||
final List<Uint8List> sampledEmbeddingsProto =
|
final List<Uint8List> sampledEmbeddingsProto =
|
||||||
_randomSampleWithoutReplacement(
|
_randomSampleWithoutReplacement(
|
||||||
personEmbeddingsProto,
|
personEmbeddingsProto,
|
||||||
sampleSize,
|
sampleSize,
|
||||||
);
|
);
|
||||||
final List<List<double>> sampledEmbeddings = sampledEmbeddingsProto
|
final List<Vector> sampledEmbeddings = sampledEmbeddingsProto
|
||||||
.map((embedding) => EVector.fromBuffer(embedding).values)
|
.map(
|
||||||
|
(embedding) => Vector.fromList(
|
||||||
|
EVector.fromBuffer(embedding).values,
|
||||||
|
dtype: DType.float32,
|
||||||
|
),
|
||||||
|
)
|
||||||
.toList(growable: false);
|
.toList(growable: false);
|
||||||
|
|
||||||
// Find the actual closest clusters for the person using median
|
// Find the actual closest clusters for the person using median
|
||||||
@ -552,16 +584,20 @@ class ClusterFeedbackService {
|
|||||||
otherEmbeddingsProto,
|
otherEmbeddingsProto,
|
||||||
sampleSize,
|
sampleSize,
|
||||||
);
|
);
|
||||||
final List<List<double>> sampledOtherEmbeddings =
|
final List<Vector> sampledOtherEmbeddings = sampledOtherEmbeddingsProto
|
||||||
sampledOtherEmbeddingsProto
|
.map(
|
||||||
.map((embedding) => EVector.fromBuffer(embedding).values)
|
(embedding) => Vector.fromList(
|
||||||
.toList(growable: false);
|
EVector.fromBuffer(embedding).values,
|
||||||
|
dtype: DType.float32,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
.toList(growable: false);
|
||||||
|
|
||||||
// Calculate distances and find the median
|
// Calculate distances and find the median
|
||||||
final List<double> distances = [];
|
final List<double> distances = [];
|
||||||
for (final otherEmbedding in sampledOtherEmbeddings) {
|
for (final otherEmbedding in sampledOtherEmbeddings) {
|
||||||
for (final embedding in sampledEmbeddings) {
|
for (final embedding in sampledEmbeddings) {
|
||||||
distances.add(cosineDistForNormVectors(embedding, otherEmbedding));
|
distances.add(cosineDistanceSIMD(embedding, otherEmbedding));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
distances.sort();
|
distances.sort();
|
||||||
@ -575,7 +611,7 @@ class ClusterFeedbackService {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
watch.log("Finished median test");
|
w?.log("Finished median test");
|
||||||
if (suggestionsMedian.isEmpty) {
|
if (suggestionsMedian.isEmpty) {
|
||||||
_logger.info("No suggestions found using median");
|
_logger.info("No suggestions found using median");
|
||||||
return [];
|
return [];
|
||||||
@ -607,13 +643,14 @@ class ClusterFeedbackService {
|
|||||||
return finalSuggestionsMedian;
|
return finalSuggestionsMedian;
|
||||||
}
|
}
|
||||||
|
|
||||||
Future<Map<int, List<double>>> _getUpdateClusterAvg(
|
Future<Map<int, Vector>> _getUpdateClusterAvg(
|
||||||
Map<int, int> allClusterIdsToCountMap,
|
Map<int, int> allClusterIdsToCountMap,
|
||||||
Set<int> ignoredClusters, {
|
Set<int> ignoredClusters, {
|
||||||
int minClusterSize = 1,
|
int minClusterSize = 1,
|
||||||
int maxClusterInCurrentRun = 500,
|
int maxClusterInCurrentRun = 500,
|
||||||
int maxEmbeddingToRead = 10000,
|
int maxEmbeddingToRead = 10000,
|
||||||
}) async {
|
}) async {
|
||||||
|
final w = (kDebugMode ? EnteWatch('_getUpdateClusterAvg') : null)?..start();
|
||||||
final startTime = DateTime.now();
|
final startTime = DateTime.now();
|
||||||
final faceMlDb = FaceMLDataDB.instance;
|
final faceMlDb = FaceMLDataDB.instance;
|
||||||
_logger.info(
|
_logger.info(
|
||||||
@ -624,16 +661,15 @@ class ClusterFeedbackService {
|
|||||||
await faceMlDb.getAllClusterSummary(minClusterSize);
|
await faceMlDb.getAllClusterSummary(minClusterSize);
|
||||||
final Map<int, (Uint8List, int)> updatesForClusterSummary = {};
|
final Map<int, (Uint8List, int)> updatesForClusterSummary = {};
|
||||||
|
|
||||||
final Map<int, List<double>> clusterAvg = {};
|
final Map<int, Vector> clusterAvg = {};
|
||||||
|
|
||||||
dev.log(
|
w?.log(
|
||||||
'getUpdateClusterAvg database call for getAllClusterSummary took ${DateTime.now().difference(startTime).inMilliseconds} ms',
|
'getUpdateClusterAvg database call for getAllClusterSummary',
|
||||||
);
|
);
|
||||||
|
|
||||||
final allClusterIds = allClusterIdsToCountMap.keys.toSet();
|
final allClusterIds = allClusterIdsToCountMap.keys.toSet();
|
||||||
int ignoredClustersCnt = 0, alreadyUpdatedClustersCnt = 0;
|
int ignoredClustersCnt = 0, alreadyUpdatedClustersCnt = 0;
|
||||||
int smallerClustersCnt = 0;
|
int smallerClustersCnt = 0;
|
||||||
final serializationTime = DateTime.now();
|
|
||||||
for (final id in allClusterIdsToCountMap.keys) {
|
for (final id in allClusterIdsToCountMap.keys) {
|
||||||
if (ignoredClusters.contains(id)) {
|
if (ignoredClusters.contains(id)) {
|
||||||
allClusterIds.remove(id);
|
allClusterIds.remove(id);
|
||||||
@ -641,7 +677,10 @@ class ClusterFeedbackService {
|
|||||||
}
|
}
|
||||||
if (clusterToSummary[id]?.$2 == allClusterIdsToCountMap[id]) {
|
if (clusterToSummary[id]?.$2 == allClusterIdsToCountMap[id]) {
|
||||||
allClusterIds.remove(id);
|
allClusterIds.remove(id);
|
||||||
clusterAvg[id] = EVector.fromBuffer(clusterToSummary[id]!.$1).values;
|
clusterAvg[id] = Vector.fromList(
|
||||||
|
EVector.fromBuffer(clusterToSummary[id]!.$1).values,
|
||||||
|
dtype: DType.float32,
|
||||||
|
);
|
||||||
alreadyUpdatedClustersCnt++;
|
alreadyUpdatedClustersCnt++;
|
||||||
}
|
}
|
||||||
if (allClusterIdsToCountMap[id]! < minClusterSize) {
|
if (allClusterIdsToCountMap[id]! < minClusterSize) {
|
||||||
@ -649,8 +688,8 @@ class ClusterFeedbackService {
|
|||||||
smallerClustersCnt++;
|
smallerClustersCnt++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
dev.log(
|
w?.log(
|
||||||
'serialization of embeddings took ${DateTime.now().difference(serializationTime).inMilliseconds} ms',
|
'serialization of embeddings',
|
||||||
);
|
);
|
||||||
_logger.info(
|
_logger.info(
|
||||||
'Ignored $ignoredClustersCnt clusters, already updated $alreadyUpdatedClustersCnt clusters, $smallerClustersCnt clusters are smaller than $minClusterSize',
|
'Ignored $ignoredClustersCnt clusters, already updated $alreadyUpdatedClustersCnt clusters, $smallerClustersCnt clusters are smaller than $minClusterSize',
|
||||||
@ -670,12 +709,7 @@ class ClusterFeedbackService {
|
|||||||
allClusterIdsToCountMap[b]!.compareTo(allClusterIdsToCountMap[a]!),
|
allClusterIdsToCountMap[b]!.compareTo(allClusterIdsToCountMap[a]!),
|
||||||
);
|
);
|
||||||
int indexedInCurrentRun = 0;
|
int indexedInCurrentRun = 0;
|
||||||
final EnteWatch? w = kDebugMode ? EnteWatch("computeAvg") : null;
|
w?.reset();
|
||||||
w?.start();
|
|
||||||
|
|
||||||
w?.log(
|
|
||||||
'reading embeddings for $maxClusterInCurrentRun or ${sortedClusterIDs.length} clusters',
|
|
||||||
);
|
|
||||||
|
|
||||||
int currentPendingRead = 0;
|
int currentPendingRead = 0;
|
||||||
final List<int> clusterIdsToRead = [];
|
final List<int> clusterIdsToRead = [];
|
||||||
@ -706,19 +740,17 @@ class ClusterFeedbackService {
|
|||||||
);
|
);
|
||||||
|
|
||||||
for (final clusterID in clusterEmbeddings.keys) {
|
for (final clusterID in clusterEmbeddings.keys) {
|
||||||
late List<double> avg;
|
final Iterable<Uint8List> embeddings = clusterEmbeddings[clusterID]!;
|
||||||
final Iterable<Uint8List> embedings = clusterEmbeddings[clusterID]!;
|
final Iterable<Vector> vectors = embeddings.map(
|
||||||
final List<double> sum = List.filled(192, 0);
|
(e) => Vector.fromList(
|
||||||
for (final embedding in embedings) {
|
EVector.fromBuffer(e).values,
|
||||||
final data = EVector.fromBuffer(embedding).values;
|
dtype: DType.float32,
|
||||||
for (int i = 0; i < sum.length; i++) {
|
),
|
||||||
sum[i] += data[i];
|
);
|
||||||
}
|
final avg = vectors.reduce((a, b) => a + b) / vectors.length;
|
||||||
}
|
final avgEmbeddingBuffer = EVector(values: avg).writeToBuffer();
|
||||||
avg = sum.map((e) => e / embedings.length).toList();
|
|
||||||
final avgEmbeedingBuffer = EVector(values: avg).writeToBuffer();
|
|
||||||
updatesForClusterSummary[clusterID] =
|
updatesForClusterSummary[clusterID] =
|
||||||
(avgEmbeedingBuffer, embedings.length);
|
(avgEmbeddingBuffer, embeddings.length);
|
||||||
// store the intermediate updates
|
// store the intermediate updates
|
||||||
indexedInCurrentRun++;
|
indexedInCurrentRun++;
|
||||||
if (updatesForClusterSummary.length > 100) {
|
if (updatesForClusterSummary.length > 100) {
|
||||||
@ -745,20 +777,22 @@ class ClusterFeedbackService {
|
|||||||
|
|
||||||
/// Returns a map of person's clusterID to map of closest clusterID to with disstance
|
/// Returns a map of person's clusterID to map of closest clusterID to with disstance
|
||||||
List<(int, double)> _calcSuggestionsMean(
|
List<(int, double)> _calcSuggestionsMean(
|
||||||
Map<int, List<double>> clusterAvg,
|
Map<int, Vector> clusterAvg,
|
||||||
Set<int> personClusters,
|
Set<int> personClusters,
|
||||||
Set<int> ignoredClusters,
|
Set<int> ignoredClusters,
|
||||||
double maxClusterDistance, {
|
double maxClusterDistance, {
|
||||||
Map<int, int>? allClusterIdsToCountMap,
|
Map<int, int>? allClusterIdsToCountMap,
|
||||||
}) {
|
}) {
|
||||||
final Map<int, List<(int, double)>> suggestions = {};
|
final Map<int, List<(int, double)>> suggestions = {};
|
||||||
|
int suggestionCount = 0;
|
||||||
|
final w = (kDebugMode ? EnteWatch('getSuggestions') : null)?..start();
|
||||||
for (final otherClusterID in clusterAvg.keys) {
|
for (final otherClusterID in clusterAvg.keys) {
|
||||||
// ignore the cluster that belong to the person or is ignored
|
// ignore the cluster that belong to the person or is ignored
|
||||||
if (personClusters.contains(otherClusterID) ||
|
if (personClusters.contains(otherClusterID) ||
|
||||||
ignoredClusters.contains(otherClusterID)) {
|
ignoredClusters.contains(otherClusterID)) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
final otherAvg = clusterAvg[otherClusterID]!;
|
final Vector otherAvg = clusterAvg[otherClusterID]!;
|
||||||
int? nearestPersonCluster;
|
int? nearestPersonCluster;
|
||||||
double? minDistance;
|
double? minDistance;
|
||||||
for (final personCluster in personClusters) {
|
for (final personCluster in personClusters) {
|
||||||
@ -766,8 +800,8 @@ class ClusterFeedbackService {
|
|||||||
_logger.info('no avg for cluster $personCluster');
|
_logger.info('no avg for cluster $personCluster');
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
final avg = clusterAvg[personCluster]!;
|
final Vector avg = clusterAvg[personCluster]!;
|
||||||
final distance = cosineDistForNormVectors(avg, otherAvg);
|
final distance = cosineDistanceSIMD(avg, otherAvg);
|
||||||
if (distance < maxClusterDistance) {
|
if (distance < maxClusterDistance) {
|
||||||
if (minDistance == null || distance < minDistance) {
|
if (minDistance == null || distance < minDistance) {
|
||||||
minDistance = distance;
|
minDistance = distance;
|
||||||
@ -779,30 +813,35 @@ class ClusterFeedbackService {
|
|||||||
suggestions
|
suggestions
|
||||||
.putIfAbsent(nearestPersonCluster, () => [])
|
.putIfAbsent(nearestPersonCluster, () => [])
|
||||||
.add((otherClusterID, minDistance));
|
.add((otherClusterID, minDistance));
|
||||||
|
suggestionCount++;
|
||||||
|
}
|
||||||
|
if (suggestionCount >= 2000) {
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
w?.log('calculation inside calcSuggestionsMean');
|
||||||
|
|
||||||
if (suggestions.isNotEmpty) {
|
if (suggestions.isNotEmpty) {
|
||||||
final List<(int, double)> suggestClusterIds = [];
|
final List<(int, double)> suggestClusterIds = [];
|
||||||
for (final List<(int, double)> suggestion in suggestions.values) {
|
for (final List<(int, double)> suggestion in suggestions.values) {
|
||||||
suggestClusterIds.addAll(suggestion);
|
suggestClusterIds.addAll(suggestion);
|
||||||
}
|
}
|
||||||
List<int>? suggestClusterIdsSizes;
|
suggestClusterIds.sort(
|
||||||
if (allClusterIdsToCountMap != null) {
|
(a, b) => a.$2.compareTo(b.$2),
|
||||||
suggestClusterIds.sort(
|
); // sort by distance
|
||||||
(a, b) => allClusterIdsToCountMap[b.$1]!
|
|
||||||
.compareTo(allClusterIdsToCountMap[a.$1]!),
|
// List<int>? suggestClusterIdsSizes;
|
||||||
);
|
// if (allClusterIdsToCountMap != null) {
|
||||||
suggestClusterIdsSizes = suggestClusterIds
|
// suggestClusterIdsSizes = suggestClusterIds
|
||||||
.map((e) => allClusterIdsToCountMap[e.$1]!)
|
// .map((e) => allClusterIdsToCountMap[e.$1]!)
|
||||||
.toList(growable: false);
|
// .toList(growable: false);
|
||||||
}
|
// }
|
||||||
final suggestClusterIdsDistances =
|
// final suggestClusterIdsDistances =
|
||||||
suggestClusterIds.map((e) => e.$2).toList(growable: false);
|
// suggestClusterIds.map((e) => e.$2).toList(growable: false);
|
||||||
_logger.info(
|
_logger.info(
|
||||||
"Already found good suggestions using mean: $suggestClusterIds, ${suggestClusterIdsSizes != null ? 'with sizes $suggestClusterIdsSizes' : ''} and distances $suggestClusterIdsDistances",
|
"Already found ${suggestClusterIds.length} good suggestions using mean",
|
||||||
);
|
);
|
||||||
return suggestClusterIds;
|
return suggestClusterIds.sublist(0, min(suggestClusterIds.length, 20));
|
||||||
} else {
|
} else {
|
||||||
_logger.info("No suggestions found using mean");
|
_logger.info("No suggestions found using mean");
|
||||||
return <(int, double)>[];
|
return <(int, double)>[];
|
||||||
@ -841,56 +880,88 @@ class ClusterFeedbackService {
|
|||||||
|
|
||||||
Future<void> _sortSuggestionsOnDistanceToPerson(
|
Future<void> _sortSuggestionsOnDistanceToPerson(
|
||||||
PersonEntity person,
|
PersonEntity person,
|
||||||
List<ClusterSuggestion> suggestions,
|
List<ClusterSuggestion> suggestions, {
|
||||||
) async {
|
bool onlySortBigSuggestions = true,
|
||||||
|
}) async {
|
||||||
if (suggestions.isEmpty) {
|
if (suggestions.isEmpty) {
|
||||||
debugPrint('No suggestions to sort');
|
debugPrint('No suggestions to sort');
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
if (onlySortBigSuggestions) {
|
||||||
|
final bigSuggestions = suggestions
|
||||||
|
.where(
|
||||||
|
(s) => s.filesInCluster.length > kMinimumClusterSizeSearchResult,
|
||||||
|
)
|
||||||
|
.toList();
|
||||||
|
if (bigSuggestions.isEmpty) {
|
||||||
|
debugPrint('No big suggestions to sort');
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
final startTime = DateTime.now();
|
final startTime = DateTime.now();
|
||||||
final faceMlDb = FaceMLDataDB.instance;
|
final faceMlDb = FaceMLDataDB.instance;
|
||||||
|
|
||||||
// Get the cluster averages for the person's clusters and the suggestions' clusters
|
// Get the cluster averages for the person's clusters and the suggestions' clusters
|
||||||
final Map<int, (Uint8List, int)> clusterToSummary =
|
final personClusters = await faceMlDb.getPersonClusterIDs(person.remoteID);
|
||||||
await faceMlDb.getAllClusterSummary();
|
final Map<int, (Uint8List, int)> personClusterToSummary =
|
||||||
|
await faceMlDb.getClusterToClusterSummary(personClusters);
|
||||||
|
final clusterSummaryCallTime = DateTime.now();
|
||||||
|
|
||||||
// Calculate the avg embedding of the person
|
// Calculate the avg embedding of the person
|
||||||
final personClusters = await faceMlDb.getPersonClusterIDs(person.remoteID);
|
final w = (kDebugMode ? EnteWatch('sortSuggestions') : null)?..start();
|
||||||
final personEmbeddingsCount = personClusters
|
final personEmbeddingsCount = personClusters
|
||||||
.map((e) => clusterToSummary[e]!.$2)
|
.map((e) => personClusterToSummary[e]!.$2)
|
||||||
.reduce((a, b) => a + b);
|
.reduce((a, b) => a + b);
|
||||||
final List<double> personAvg = List.filled(192, 0);
|
Vector personAvg = Vector.filled(192, 0);
|
||||||
for (final personClusterID in personClusters) {
|
for (final personClusterID in personClusters) {
|
||||||
final personClusterBlob = clusterToSummary[personClusterID]!.$1;
|
final personClusterBlob = personClusterToSummary[personClusterID]!.$1;
|
||||||
final personClusterAvg = EVector.fromBuffer(personClusterBlob).values;
|
final personClusterAvg = Vector.fromList(
|
||||||
|
EVector.fromBuffer(personClusterBlob).values,
|
||||||
|
dtype: DType.float32,
|
||||||
|
);
|
||||||
final clusterWeight =
|
final clusterWeight =
|
||||||
clusterToSummary[personClusterID]!.$2 / personEmbeddingsCount;
|
personClusterToSummary[personClusterID]!.$2 / personEmbeddingsCount;
|
||||||
for (int i = 0; i < personClusterAvg.length; i++) {
|
personAvg += personClusterAvg * clusterWeight;
|
||||||
personAvg[i] += personClusterAvg[i] *
|
|
||||||
clusterWeight; // Weighted sum of the cluster averages
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
w?.log('calculated person avg');
|
||||||
|
|
||||||
// Sort the suggestions based on the distance to the person
|
// Sort the suggestions based on the distance to the person
|
||||||
for (final suggestion in suggestions) {
|
for (final suggestion in suggestions) {
|
||||||
|
if (onlySortBigSuggestions) {
|
||||||
|
if (suggestion.filesInCluster.length <= 8) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
final clusterID = suggestion.clusterIDToMerge;
|
final clusterID = suggestion.clusterIDToMerge;
|
||||||
final faceIdToEmbeddingMap = await faceMlDb.getFaceEmbeddingMapForFile(
|
final faceIDs = suggestion.faceIDsInCluster;
|
||||||
suggestion.filesInCluster.map((e) => e.uploadedFileID!).toList(),
|
final faceIdToEmbeddingMap = await faceMlDb.getFaceEmbeddingMapForFaces(
|
||||||
|
faceIDs,
|
||||||
|
);
|
||||||
|
final faceIdToVectorMap = faceIdToEmbeddingMap.map(
|
||||||
|
(key, value) => MapEntry(
|
||||||
|
key,
|
||||||
|
Vector.fromList(
|
||||||
|
EVector.fromBuffer(value).values,
|
||||||
|
dtype: DType.float32,
|
||||||
|
),
|
||||||
|
),
|
||||||
|
);
|
||||||
|
w?.log(
|
||||||
|
'got ${faceIdToEmbeddingMap.values.length} embeddings for ${suggestion.filesInCluster.length} files for cluster $clusterID',
|
||||||
);
|
);
|
||||||
final fileIdToDistanceMap = {};
|
final fileIdToDistanceMap = {};
|
||||||
for (final entry in faceIdToEmbeddingMap.entries) {
|
for (final entry in faceIdToVectorMap.entries) {
|
||||||
fileIdToDistanceMap[getFileIdFromFaceId(entry.key)] =
|
fileIdToDistanceMap[getFileIdFromFaceId(entry.key)] =
|
||||||
cosineDistForNormVectors(
|
cosineDistanceSIMD(personAvg, entry.value);
|
||||||
personAvg,
|
|
||||||
EVector.fromBuffer(entry.value).values,
|
|
||||||
);
|
|
||||||
}
|
}
|
||||||
|
w?.log('calculated distances for cluster $clusterID');
|
||||||
suggestion.filesInCluster.sort((b, a) {
|
suggestion.filesInCluster.sort((b, a) {
|
||||||
//todo: review with @laurens, added this to avoid null safety issue
|
//todo: review with @laurens, added this to avoid null safety issue
|
||||||
final double distanceA = fileIdToDistanceMap[a.uploadedFileID!] ?? -1;
|
final double distanceA = fileIdToDistanceMap[a.uploadedFileID!] ?? -1;
|
||||||
final double distanceB = fileIdToDistanceMap[b.uploadedFileID!] ?? -1;
|
final double distanceB = fileIdToDistanceMap[b.uploadedFileID!] ?? -1;
|
||||||
return distanceA.compareTo(distanceB);
|
return distanceA.compareTo(distanceB);
|
||||||
});
|
});
|
||||||
|
w?.log('sorted files for cluster $clusterID');
|
||||||
|
|
||||||
debugPrint(
|
debugPrint(
|
||||||
"[${_logger.name}] Sorted suggestions for cluster $clusterID based on distance to person: ${suggestion.filesInCluster.map((e) => fileIdToDistanceMap[e.uploadedFileID]).toList()}",
|
"[${_logger.name}] Sorted suggestions for cluster $clusterID based on distance to person: ${suggestion.filesInCluster.map((e) => fileIdToDistanceMap[e.uploadedFileID]).toList()}",
|
||||||
@ -899,7 +970,7 @@ class ClusterFeedbackService {
|
|||||||
|
|
||||||
final endTime = DateTime.now();
|
final endTime = DateTime.now();
|
||||||
_logger.info(
|
_logger.info(
|
||||||
"Sorting suggestions based on distance to person took ${endTime.difference(startTime).inMilliseconds} ms for ${suggestions.length} suggestions",
|
"Sorting suggestions based on distance to person took ${endTime.difference(startTime).inMilliseconds} ms for ${suggestions.length} suggestions, of which ${clusterSummaryCallTime.difference(startTime).inMilliseconds} ms was spent on the cluster summary call",
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
import "dart:async" show unawaited;
|
||||||
import "dart:convert";
|
import "dart:convert";
|
||||||
|
|
||||||
import "package:flutter/foundation.dart";
|
import "package:flutter/foundation.dart";
|
||||||
@ -102,10 +103,12 @@ class PersonService {
|
|||||||
faces: faceIds.toSet(),
|
faces: faceIds.toSet(),
|
||||||
);
|
);
|
||||||
personData.assigned!.add(clusterInfo);
|
personData.assigned!.add(clusterInfo);
|
||||||
await entityService.addOrUpdate(
|
unawaited(
|
||||||
EntityType.person,
|
entityService.addOrUpdate(
|
||||||
json.encode(personData.toJson()),
|
EntityType.person,
|
||||||
id: personID,
|
json.encode(personData.toJson()),
|
||||||
|
id: personID,
|
||||||
|
),
|
||||||
);
|
);
|
||||||
await faceMLDataDB.assignClusterToPerson(
|
await faceMLDataDB.assignClusterToPerson(
|
||||||
personID: personID,
|
personID: personID,
|
||||||
@ -190,7 +193,7 @@ class PersonService {
|
|||||||
}
|
}
|
||||||
|
|
||||||
logger.info("Storing feedback for ${faceIdToClusterID.length} faces");
|
logger.info("Storing feedback for ${faceIdToClusterID.length} faces");
|
||||||
await faceMLDataDB.updateClusterIdToFaceId(faceIdToClusterID);
|
await faceMLDataDB.updateFaceIdToClusterId(faceIdToClusterID);
|
||||||
await faceMLDataDB.bulkAssignClusterToPersonID(clusterToPersonID);
|
await faceMLDataDB.bulkAssignClusterToPersonID(clusterToPersonID);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -264,13 +264,56 @@ class _FaceWidgetState extends State<FaceWidget> {
|
|||||||
},
|
},
|
||||||
child: Column(
|
child: Column(
|
||||||
children: [
|
children: [
|
||||||
SizedBox(
|
Stack(
|
||||||
width: 60,
|
children: [
|
||||||
height: 60,
|
Container(
|
||||||
child: CroppedFaceImgImageView(
|
height: 60,
|
||||||
enteFile: widget.file,
|
width: 60,
|
||||||
face: widget.face,
|
decoration: ShapeDecoration(
|
||||||
),
|
shape: RoundedRectangleBorder(
|
||||||
|
borderRadius: const BorderRadius.all(
|
||||||
|
Radius.elliptical(16, 12),
|
||||||
|
),
|
||||||
|
side: widget.highlight
|
||||||
|
? BorderSide(
|
||||||
|
color: getEnteColorScheme(context).primary700,
|
||||||
|
width: 1.0,
|
||||||
|
)
|
||||||
|
: BorderSide.none,
|
||||||
|
),
|
||||||
|
),
|
||||||
|
child: ClipRRect(
|
||||||
|
borderRadius:
|
||||||
|
const BorderRadius.all(Radius.elliptical(16, 12)),
|
||||||
|
child: SizedBox(
|
||||||
|
width: 60,
|
||||||
|
height: 60,
|
||||||
|
child: CroppedFaceImgImageView(
|
||||||
|
enteFile: widget.file,
|
||||||
|
face: widget.face,
|
||||||
|
),
|
||||||
|
),
|
||||||
|
),
|
||||||
|
),
|
||||||
|
// TODO: the edges of the green line are still not properly rounded around ClipRRect
|
||||||
|
if (widget.editMode)
|
||||||
|
Positioned(
|
||||||
|
right: 0,
|
||||||
|
top: 0,
|
||||||
|
child: GestureDetector(
|
||||||
|
onTap: _cornerIconPressed,
|
||||||
|
child: isJustRemoved
|
||||||
|
? const Icon(
|
||||||
|
CupertinoIcons.add_circled_solid,
|
||||||
|
color: Colors.green,
|
||||||
|
)
|
||||||
|
: const Icon(
|
||||||
|
Icons.cancel,
|
||||||
|
color: Colors.red,
|
||||||
|
),
|
||||||
|
),
|
||||||
|
),
|
||||||
|
],
|
||||||
),
|
),
|
||||||
const SizedBox(height: 8),
|
const SizedBox(height: 8),
|
||||||
if (widget.person != null)
|
if (widget.person != null)
|
||||||
|
@ -71,9 +71,9 @@ class _FacesItemWidgetState extends State<FacesItemWidget> {
|
|||||||
];
|
];
|
||||||
}
|
}
|
||||||
|
|
||||||
// Remove faces with low scores and blurry faces
|
// Remove faces with low scores
|
||||||
if (!kDebugMode) {
|
if (!kDebugMode) {
|
||||||
faces.removeWhere((face) => (face.isBlurry || face.score < 0.75));
|
faces.removeWhere((face) => (face.score < 0.75));
|
||||||
}
|
}
|
||||||
|
|
||||||
if (faces.isEmpty) {
|
if (faces.isEmpty) {
|
||||||
@ -85,9 +85,6 @@ class _FacesItemWidgetState extends State<FacesItemWidget> {
|
|||||||
];
|
];
|
||||||
}
|
}
|
||||||
|
|
||||||
// Sort the faces by score in descending order, so that the highest scoring face is first.
|
|
||||||
faces.sort((Face a, Face b) => b.score.compareTo(a.score));
|
|
||||||
|
|
||||||
// TODO: add deduplication of faces of same person
|
// TODO: add deduplication of faces of same person
|
||||||
final faceIdsToClusterIds = await FaceMLDataDB.instance
|
final faceIdsToClusterIds = await FaceMLDataDB.instance
|
||||||
.getFaceIdsToClusterIds(faces.map((face) => face.faceID));
|
.getFaceIdsToClusterIds(faces.map((face) => face.faceID));
|
||||||
@ -96,6 +93,29 @@ class _FacesItemWidgetState extends State<FacesItemWidget> {
|
|||||||
final clusterIDToPerson =
|
final clusterIDToPerson =
|
||||||
await FaceMLDataDB.instance.getClusterIDToPersonID();
|
await FaceMLDataDB.instance.getClusterIDToPersonID();
|
||||||
|
|
||||||
|
// Sort faces by name and score
|
||||||
|
final faceIdToPersonID = <String, String>{};
|
||||||
|
for (final face in faces) {
|
||||||
|
final clusterID = faceIdsToClusterIds[face.faceID];
|
||||||
|
if (clusterID != null) {
|
||||||
|
final personID = clusterIDToPerson[clusterID];
|
||||||
|
if (personID != null) {
|
||||||
|
faceIdToPersonID[face.faceID] = personID;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
faces.sort((Face a, Face b) {
|
||||||
|
final aPersonID = faceIdToPersonID[a.faceID];
|
||||||
|
final bPersonID = faceIdToPersonID[b.faceID];
|
||||||
|
if (aPersonID != null && bPersonID == null) {
|
||||||
|
return -1;
|
||||||
|
} else if (aPersonID == null && bPersonID != null) {
|
||||||
|
return 1;
|
||||||
|
} else {
|
||||||
|
return b.score.compareTo(a.score);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
final lastViewedClusterID = ClusterFeedbackService.lastViewedClusterID;
|
final lastViewedClusterID = ClusterFeedbackService.lastViewedClusterID;
|
||||||
|
|
||||||
final faceWidgets = <FaceWidget>[];
|
final faceWidgets = <FaceWidget>[];
|
||||||
|
@ -207,14 +207,14 @@ class _AppBarWidgetState extends State<ClusterAppBar> {
|
|||||||
if (embedding.key == otherEmbedding.key) {
|
if (embedding.key == otherEmbedding.key) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
final distance64 = 1.0 -
|
final distance64 = cosineDistanceSIMD(
|
||||||
Vector.fromList(embedding.value, dtype: DType.float64).dot(
|
Vector.fromList(embedding.value, dtype: DType.float64),
|
||||||
Vector.fromList(otherEmbedding.value, dtype: DType.float64),
|
Vector.fromList(otherEmbedding.value, dtype: DType.float64),
|
||||||
);
|
);
|
||||||
final distance32 = 1.0 -
|
final distance32 = cosineDistanceSIMD(
|
||||||
Vector.fromList(embedding.value, dtype: DType.float32).dot(
|
Vector.fromList(embedding.value, dtype: DType.float32),
|
||||||
Vector.fromList(otherEmbedding.value, dtype: DType.float32),
|
Vector.fromList(otherEmbedding.value, dtype: DType.float32),
|
||||||
);
|
);
|
||||||
final distance = cosineDistForNormVectors(
|
final distance = cosineDistForNormVectors(
|
||||||
embedding.value,
|
embedding.value,
|
||||||
otherEmbedding.value,
|
otherEmbedding.value,
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
import "dart:async" show StreamSubscription, unawaited;
|
||||||
import "dart:math";
|
import "dart:math";
|
||||||
|
|
||||||
import "package:flutter/foundation.dart" show kDebugMode;
|
import "package:flutter/foundation.dart" show kDebugMode;
|
||||||
@ -29,16 +30,25 @@ class PersonReviewClusterSuggestion extends StatefulWidget {
|
|||||||
|
|
||||||
class _PersonClustersState extends State<PersonReviewClusterSuggestion> {
|
class _PersonClustersState extends State<PersonReviewClusterSuggestion> {
|
||||||
int currentSuggestionIndex = 0;
|
int currentSuggestionIndex = 0;
|
||||||
|
bool fetch = true;
|
||||||
Key futureBuilderKey = UniqueKey();
|
Key futureBuilderKey = UniqueKey();
|
||||||
|
|
||||||
// Declare a variable for the future
|
// Declare a variable for the future
|
||||||
late Future<List<ClusterSuggestion>> futureClusterSuggestions;
|
late Future<List<ClusterSuggestion>> futureClusterSuggestions;
|
||||||
|
late StreamSubscription<PeopleChangedEvent> _peopleChangedEvent;
|
||||||
|
|
||||||
@override
|
@override
|
||||||
void initState() {
|
void initState() {
|
||||||
super.initState();
|
super.initState();
|
||||||
// Initialize the future in initState
|
// Initialize the future in initState
|
||||||
_fetchClusterSuggestions();
|
if (fetch) _fetchClusterSuggestions();
|
||||||
|
fetch = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
@override
|
||||||
|
void dispose() {
|
||||||
|
_peopleChangedEvent.cancel();
|
||||||
|
super.dispose();
|
||||||
}
|
}
|
||||||
|
|
||||||
@override
|
@override
|
||||||
@ -61,12 +71,27 @@ class _PersonClustersState extends State<PersonReviewClusterSuggestion> {
|
|||||||
),
|
),
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
final numberOfDifferentSuggestions = snapshot.data!.length;
|
|
||||||
final currentSuggestion = snapshot.data![currentSuggestionIndex];
|
final allSuggestions = snapshot.data!;
|
||||||
|
final numberOfDifferentSuggestions = allSuggestions.length;
|
||||||
|
final currentSuggestion = allSuggestions[currentSuggestionIndex];
|
||||||
final int clusterID = currentSuggestion.clusterIDToMerge;
|
final int clusterID = currentSuggestion.clusterIDToMerge;
|
||||||
final double distance = currentSuggestion.distancePersonToCluster;
|
final double distance = currentSuggestion.distancePersonToCluster;
|
||||||
final bool usingMean = currentSuggestion.usedOnlyMeanForSuggestion;
|
final bool usingMean = currentSuggestion.usedOnlyMeanForSuggestion;
|
||||||
final List<EnteFile> files = currentSuggestion.filesInCluster;
|
final List<EnteFile> files = currentSuggestion.filesInCluster;
|
||||||
|
|
||||||
|
_peopleChangedEvent =
|
||||||
|
Bus.instance.on<PeopleChangedEvent>().listen((event) {
|
||||||
|
if (event.type == PeopleEventType.removedFilesFromCluster &&
|
||||||
|
(event.source == clusterID.toString())) {
|
||||||
|
for (var updatedFile in event.relevantFiles!) {
|
||||||
|
files.remove(updatedFile);
|
||||||
|
}
|
||||||
|
fetch = false;
|
||||||
|
setState(() {});
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
return InkWell(
|
return InkWell(
|
||||||
onTap: () {
|
onTap: () {
|
||||||
Navigator.of(context).push(
|
Navigator.of(context).push(
|
||||||
@ -90,6 +115,7 @@ class _PersonClustersState extends State<PersonReviewClusterSuggestion> {
|
|||||||
usingMean,
|
usingMean,
|
||||||
files,
|
files,
|
||||||
numberOfDifferentSuggestions,
|
numberOfDifferentSuggestions,
|
||||||
|
allSuggestions,
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
);
|
);
|
||||||
@ -116,20 +142,25 @@ class _PersonClustersState extends State<PersonReviewClusterSuggestion> {
|
|||||||
clusterID: clusterID,
|
clusterID: clusterID,
|
||||||
);
|
);
|
||||||
Bus.instance.fire(PeopleChangedEvent());
|
Bus.instance.fire(PeopleChangedEvent());
|
||||||
|
// Increment the suggestion index
|
||||||
|
if (mounted) {
|
||||||
|
setState(() => currentSuggestionIndex++);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if we need to fetch new data
|
||||||
|
if (currentSuggestionIndex >= (numberOfSuggestions)) {
|
||||||
|
setState(() {
|
||||||
|
currentSuggestionIndex = 0;
|
||||||
|
futureBuilderKey = UniqueKey(); // Reset to trigger FutureBuilder
|
||||||
|
_fetchClusterSuggestions();
|
||||||
|
});
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
await FaceMLDataDB.instance.captureNotPersonFeedback(
|
await FaceMLDataDB.instance.captureNotPersonFeedback(
|
||||||
personID: widget.person.remoteID,
|
personID: widget.person.remoteID,
|
||||||
clusterID: clusterID,
|
clusterID: clusterID,
|
||||||
);
|
);
|
||||||
}
|
// Recalculate the suggestions when a suggestion is rejected
|
||||||
|
|
||||||
// Increment the suggestion index
|
|
||||||
if (mounted) {
|
|
||||||
setState(() => currentSuggestionIndex++);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Check if we need to fetch new data
|
|
||||||
if (currentSuggestionIndex >= (numberOfSuggestions)) {
|
|
||||||
setState(() {
|
setState(() {
|
||||||
currentSuggestionIndex = 0;
|
currentSuggestionIndex = 0;
|
||||||
futureBuilderKey = UniqueKey(); // Reset to trigger FutureBuilder
|
futureBuilderKey = UniqueKey(); // Reset to trigger FutureBuilder
|
||||||
@ -150,9 +181,10 @@ class _PersonClustersState extends State<PersonReviewClusterSuggestion> {
|
|||||||
bool usingMean,
|
bool usingMean,
|
||||||
List<EnteFile> files,
|
List<EnteFile> files,
|
||||||
int numberOfSuggestions,
|
int numberOfSuggestions,
|
||||||
|
List<ClusterSuggestion> allSuggestions,
|
||||||
) {
|
) {
|
||||||
return Column(
|
final widgetToReturn = Column(
|
||||||
key: ValueKey("cluster_id-$clusterID"),
|
key: ValueKey("cluster_id-$clusterID-files-${files.length}"),
|
||||||
children: <Widget>[
|
children: <Widget>[
|
||||||
if (kDebugMode)
|
if (kDebugMode)
|
||||||
Text(
|
Text(
|
||||||
@ -228,6 +260,28 @@ class _PersonClustersState extends State<PersonReviewClusterSuggestion> {
|
|||||||
),
|
),
|
||||||
],
|
],
|
||||||
);
|
);
|
||||||
|
// Precompute face thumbnails for next suggestions, in case there are
|
||||||
|
const precompute = 6;
|
||||||
|
const maxComputations = 10;
|
||||||
|
int compCount = 0;
|
||||||
|
|
||||||
|
if (allSuggestions.length > currentSuggestionIndex + 1) {
|
||||||
|
for (final suggestion in allSuggestions.sublist(
|
||||||
|
currentSuggestionIndex + 1,
|
||||||
|
min(allSuggestions.length, currentSuggestionIndex + precompute),
|
||||||
|
)) {
|
||||||
|
final files = suggestion.filesInCluster;
|
||||||
|
final clusterID = suggestion.clusterIDToMerge;
|
||||||
|
for (final file in files.sublist(0, min(files.length, 8))) {
|
||||||
|
unawaited(PersonFaceWidget.precomputeFaceCrops(file, clusterID));
|
||||||
|
compCount++;
|
||||||
|
if (compCount >= maxComputations) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return widgetToReturn;
|
||||||
}
|
}
|
||||||
|
|
||||||
List<Widget> _buildThumbnailWidgets(
|
List<Widget> _buildThumbnailWidgets(
|
||||||
|
@ -33,9 +33,64 @@ class PersonFaceWidget extends StatelessWidget {
|
|||||||
),
|
),
|
||||||
super(key: key);
|
super(key: key);
|
||||||
|
|
||||||
|
static Future<void> precomputeFaceCrops(file, clusterID) async {
|
||||||
|
try {
|
||||||
|
final Face? face = await FaceMLDataDB.instance.getCoverFaceForPerson(
|
||||||
|
recentFileID: file.uploadedFileID!,
|
||||||
|
clusterID: clusterID,
|
||||||
|
);
|
||||||
|
if (face == null) {
|
||||||
|
debugPrint(
|
||||||
|
"No cover face for cluster $clusterID and recentFile ${file.uploadedFileID}",
|
||||||
|
);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
final Uint8List? cachedFace = faceCropCache.get(face.faceID);
|
||||||
|
if (cachedFace != null) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
final faceCropCacheFile = cachedFaceCropPath(face.faceID);
|
||||||
|
if ((await faceCropCacheFile.exists())) {
|
||||||
|
final data = await faceCropCacheFile.readAsBytes();
|
||||||
|
faceCropCache.put(face.faceID, data);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
EnteFile? fileForFaceCrop = file;
|
||||||
|
if (face.fileID != file.uploadedFileID!) {
|
||||||
|
fileForFaceCrop =
|
||||||
|
await FilesDB.instance.getAnyUploadedFile(face.fileID);
|
||||||
|
}
|
||||||
|
if (fileForFaceCrop == null) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
final result = await pool.withResource(
|
||||||
|
() async => await getFaceCrops(
|
||||||
|
fileForFaceCrop!,
|
||||||
|
{
|
||||||
|
face.faceID: face.detection.box,
|
||||||
|
},
|
||||||
|
),
|
||||||
|
);
|
||||||
|
final Uint8List? computedCrop = result?[face.faceID];
|
||||||
|
if (computedCrop != null) {
|
||||||
|
faceCropCache.put(face.faceID, computedCrop);
|
||||||
|
faceCropCacheFile.writeAsBytes(computedCrop).ignore();
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
} catch (e, s) {
|
||||||
|
log(
|
||||||
|
"Error getting cover face for cluster $clusterID",
|
||||||
|
error: e,
|
||||||
|
stackTrace: s,
|
||||||
|
);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
@override
|
@override
|
||||||
Widget build(BuildContext context) {
|
Widget build(BuildContext context) {
|
||||||
if (useGeneratedFaceCrops) {
|
if (!useGeneratedFaceCrops) {
|
||||||
return FutureBuilder<Uint8List?>(
|
return FutureBuilder<Uint8List?>(
|
||||||
future: getFaceCrop(),
|
future: getFaceCrop(),
|
||||||
builder: (context, snapshot) {
|
builder: (context, snapshot) {
|
||||||
|
@ -11,7 +11,7 @@ import "package:photos/utils/thumbnail_util.dart";
|
|||||||
import "package:pool/pool.dart";
|
import "package:pool/pool.dart";
|
||||||
|
|
||||||
final LRUMap<String, Uint8List?> faceCropCache = LRUMap(1000);
|
final LRUMap<String, Uint8List?> faceCropCache = LRUMap(1000);
|
||||||
final pool = Pool(5, timeout: const Duration(seconds: 15));
|
final pool = Pool(10, timeout: const Duration(seconds: 15));
|
||||||
Future<Map<String, Uint8List>?> getFaceCrops(
|
Future<Map<String, Uint8List>?> getFaceCrops(
|
||||||
EnteFile file,
|
EnteFile file,
|
||||||
Map<String, FaceBox> faceBoxeMap,
|
Map<String, FaceBox> faceBoxeMap,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user