mirror of
https://github.com/ente-io/ente.git
synced 2025-08-07 07:03:35 +00:00
[mob][photos] Rename and delete lot of clip stuff
This commit is contained in:
parent
4cdbb0c128
commit
2d0cadc8c9
@ -5,7 +5,7 @@ import "package:flutter/foundation.dart";
|
||||
import "package:logging/logging.dart";
|
||||
import "package:onnxruntime/onnxruntime.dart";
|
||||
import "package:photos/services/machine_learning/ml_model.dart";
|
||||
import 'package:photos/services/machine_learning/semantic_search/frameworks/onnx/onnx_text_tokenizer.dart';
|
||||
import 'package:photos/services/machine_learning/semantic_search/clip/clip_text_tokenizer.dart';
|
||||
import "package:photos/services/remote_assets_service.dart";
|
||||
|
||||
class ClipTextEncoder extends MlModel {
|
@ -1,156 +0,0 @@
|
||||
import "dart:async";
|
||||
import "dart:io";
|
||||
|
||||
import "package:connectivity_plus/connectivity_plus.dart";
|
||||
import "package:logging/logging.dart";
|
||||
import "package:photos/core/errors.dart";
|
||||
import "package:photos/core/event_bus.dart";
|
||||
import "package:photos/events/event.dart";
|
||||
import "package:photos/services/remote_assets_service.dart";
|
||||
|
||||
abstract class MLFramework {
|
||||
static const kImageEncoderEnabled = true;
|
||||
static const kMaximumRetrials = 3;
|
||||
|
||||
static final _logger = Logger("MLFramework");
|
||||
|
||||
final bool shouldDownloadOverMobileData;
|
||||
final _initializationCompleter = Completer<void>();
|
||||
|
||||
InitializationState _state = InitializationState.notInitialized;
|
||||
|
||||
MLFramework(this.shouldDownloadOverMobileData) {
|
||||
Connectivity()
|
||||
.onConnectivityChanged
|
||||
.listen((List<ConnectivityResult> result) async {
|
||||
_logger.info("Connectivity changed to $result");
|
||||
if (_state == InitializationState.waitingForNetwork &&
|
||||
await _canDownload()) {
|
||||
unawaited(init());
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
InitializationState get initializationState => _state;
|
||||
|
||||
set _initState(InitializationState state) {
|
||||
Bus.instance.fire(MLFrameworkInitializationUpdateEvent(state));
|
||||
_logger.info("Init state is $state");
|
||||
_state = state;
|
||||
}
|
||||
|
||||
/// Returns the path of the Image Model hosted remotely
|
||||
String getImageModelRemotePath();
|
||||
|
||||
/// Returns the path of the Text Model hosted remotely
|
||||
String getTextModelRemotePath();
|
||||
|
||||
/// Loads the Image Model stored at [path] into the framework
|
||||
Future<void> loadImageModel(String path);
|
||||
|
||||
/// Loads the Text Model stored at [path] into the framework
|
||||
Future<void> loadTextModel(String path);
|
||||
|
||||
/// Returns the Image Embedding for a file stored at [imagePath]
|
||||
Future<List<double>> getImageEmbedding(String imagePath);
|
||||
|
||||
/// Returns the Text Embedding for [text]
|
||||
Future<List<double>> getTextEmbedding(String text);
|
||||
|
||||
/// Downloads the models from remote, caches them and loads them into the
|
||||
/// framework. Override this method if you would like to control the
|
||||
/// initialization. For eg. if you wish to load the model from `/assets`
|
||||
/// instead of a CDN.
|
||||
Future<void> init() async {
|
||||
try {
|
||||
_initState = InitializationState.initializing;
|
||||
await Future.wait([_initImageModel(), _initTextModel()]);
|
||||
} catch (e, s) {
|
||||
_logger.warning(e, s);
|
||||
if (e is WiFiUnavailableError) {
|
||||
return _initializationCompleter.future;
|
||||
} else {
|
||||
rethrow;
|
||||
}
|
||||
}
|
||||
_initState = InitializationState.initialized;
|
||||
_initializationCompleter.complete();
|
||||
}
|
||||
|
||||
// Releases any resources held by the framework
|
||||
Future<void> release() async {}
|
||||
|
||||
/// Returns the cosine similarity between [imageEmbedding] and [textEmbedding]
|
||||
double computeScore(List<double> imageEmbedding, List<double> textEmbedding) {
|
||||
assert(
|
||||
imageEmbedding.length == textEmbedding.length,
|
||||
"The two embeddings should have the same length",
|
||||
);
|
||||
double score = 0;
|
||||
for (int index = 0; index < imageEmbedding.length; index++) {
|
||||
score += imageEmbedding[index] * textEmbedding[index];
|
||||
}
|
||||
return score;
|
||||
}
|
||||
|
||||
// ---
|
||||
// Private methods
|
||||
// ---
|
||||
|
||||
Future<void> _initImageModel() async {
|
||||
if (!kImageEncoderEnabled) {
|
||||
return;
|
||||
}
|
||||
final imageModel = await _getModel(getImageModelRemotePath());
|
||||
await loadImageModel(imageModel.path);
|
||||
}
|
||||
|
||||
Future<void> _initTextModel() async {
|
||||
final textModel = await _getModel(getTextModelRemotePath());
|
||||
await loadTextModel(textModel.path);
|
||||
}
|
||||
|
||||
Future<File> _getModel(
|
||||
String url, {
|
||||
int trialCount = 1,
|
||||
}) async {
|
||||
if (await RemoteAssetsService.instance.hasAsset(url)) {
|
||||
return RemoteAssetsService.instance.getAsset(url);
|
||||
}
|
||||
if (!await _canDownload()) {
|
||||
_initState = InitializationState.waitingForNetwork;
|
||||
throw WiFiUnavailableError();
|
||||
}
|
||||
try {
|
||||
return RemoteAssetsService.instance.getAsset(url);
|
||||
} catch (e, s) {
|
||||
_logger.severe(e, s);
|
||||
if (trialCount < kMaximumRetrials) {
|
||||
return _getModel(url, trialCount: trialCount + 1);
|
||||
} else {
|
||||
rethrow;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Future<bool> _canDownload() async {
|
||||
final List<ConnectivityResult> connections =
|
||||
await (Connectivity().checkConnectivity());
|
||||
final bool isConnectedToMobile =
|
||||
connections.contains(ConnectivityResult.mobile);
|
||||
return !isConnectedToMobile || shouldDownloadOverMobileData;
|
||||
}
|
||||
}
|
||||
|
||||
class MLFrameworkInitializationUpdateEvent extends Event {
|
||||
final InitializationState state;
|
||||
|
||||
MLFrameworkInitializationUpdateEvent(this.state);
|
||||
}
|
||||
|
||||
enum InitializationState {
|
||||
notInitialized,
|
||||
waitingForNetwork,
|
||||
initializing,
|
||||
initialized,
|
||||
}
|
@ -1,127 +0,0 @@
|
||||
import "package:computer/computer.dart";
|
||||
import "package:logging/logging.dart";
|
||||
import "package:onnxruntime/onnxruntime.dart";
|
||||
import 'package:photos/services/machine_learning/semantic_search/frameworks/ml_framework.dart';
|
||||
import 'package:photos/services/machine_learning/semantic_search/frameworks/onnx/onnx_image_encoder.dart';
|
||||
import 'package:photos/services/machine_learning/semantic_search/frameworks/onnx/onnx_text_encoder.dart';
|
||||
import "package:photos/utils/image_isolate.dart";
|
||||
|
||||
class ONNX extends MLFramework {
|
||||
static const kModelBucketEndpoint = "https://models.ente.io/";
|
||||
static const kImageModel = "clip-image-vit-32-float32.onnx";
|
||||
// static const kTextModel = "clip-text-vit-32-uint8.onnx"; // TODO: check later whether to revert back or not
|
||||
static const kTextModel = "clip-text-vit-32-float32-int32.onnx";
|
||||
|
||||
final _computer = Computer.shared();
|
||||
final _logger = Logger("ONNX");
|
||||
final _clipImage = OnnxImageEncoder();
|
||||
final _clipText = OnnxTextEncoder();
|
||||
int _textEncoderAddress = 0;
|
||||
int _imageEncoderAddress = 0;
|
||||
|
||||
ONNX(super.shouldDownloadOverMobileData);
|
||||
|
||||
@override
|
||||
String getImageModelRemotePath() {
|
||||
return kModelBucketEndpoint + kImageModel;
|
||||
}
|
||||
|
||||
@override
|
||||
String getTextModelRemotePath() {
|
||||
return kModelBucketEndpoint + kTextModel;
|
||||
}
|
||||
|
||||
@override
|
||||
Future<void> init() async {
|
||||
await _computer.compute(initOrtEnv);
|
||||
await super.init();
|
||||
}
|
||||
|
||||
@override
|
||||
Future<void> loadImageModel(String path) async {
|
||||
final startTime = DateTime.now();
|
||||
_imageEncoderAddress = await _computer.compute(
|
||||
_clipImage.loadModel,
|
||||
param: {
|
||||
"imageModelPath": path,
|
||||
},
|
||||
);
|
||||
final endTime = DateTime.now();
|
||||
_logger.info(
|
||||
"Loading image model took: ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch).toString()}ms",
|
||||
);
|
||||
}
|
||||
|
||||
@override
|
||||
Future<void> loadTextModel(String path) async {
|
||||
_logger.info('loadTextModel called');
|
||||
final startTime = DateTime.now();
|
||||
await _clipText.initTokenizer();
|
||||
_textEncoderAddress = await _computer.compute(
|
||||
_clipText.loadModel,
|
||||
param: {
|
||||
"textModelPath": path,
|
||||
},
|
||||
);
|
||||
final endTime = DateTime.now();
|
||||
_logger.info(
|
||||
"Loading text model took: ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch).toString()}ms",
|
||||
);
|
||||
}
|
||||
|
||||
@override
|
||||
Future<List<double>> getImageEmbedding(String imagePath) async {
|
||||
_logger.info('getImageEmbedding called');
|
||||
try {
|
||||
final startTime = DateTime.now();
|
||||
// TODO: properly integrate with other ml later (FaceMlService)
|
||||
final result = await ImageIsolate.instance.inferClipImageEmbedding(
|
||||
imagePath,
|
||||
_imageEncoderAddress,
|
||||
);
|
||||
final endTime = DateTime.now();
|
||||
_logger.info(
|
||||
"getImageEmbedding done in ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch)}ms",
|
||||
);
|
||||
return result;
|
||||
} catch (e, s) {
|
||||
_logger.severe(e, s);
|
||||
rethrow;
|
||||
}
|
||||
}
|
||||
|
||||
@override
|
||||
Future<List<double>> getTextEmbedding(String text) async {
|
||||
try {
|
||||
final startTime = DateTime.now();
|
||||
final result = await _computer.compute(
|
||||
_clipText.infer,
|
||||
param: {
|
||||
"text": text,
|
||||
"address": _textEncoderAddress,
|
||||
},
|
||||
taskName: "createTextEmbedding",
|
||||
) as List<double>;
|
||||
final endTime = DateTime.now();
|
||||
_logger.info(
|
||||
"createTextEmbedding took: ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch)}ms",
|
||||
);
|
||||
return result;
|
||||
} catch (e, s) {
|
||||
_logger.severe(e, s);
|
||||
rethrow;
|
||||
}
|
||||
}
|
||||
|
||||
@override
|
||||
Future<void> release() async {
|
||||
final session = OrtSession.fromAddress(_textEncoderAddress);
|
||||
session.release();
|
||||
OrtEnv.instance.release();
|
||||
_logger.info('Released');
|
||||
}
|
||||
}
|
||||
|
||||
void initOrtEnv() async {
|
||||
OrtEnv.instance.init();
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user