[mob][photos] Rename and delete lot of clip stuff

This commit is contained in:
laurenspriem 2024-07-03 11:19:59 +05:30
parent 4cdbb0c128
commit 2d0cadc8c9
5 changed files with 1 additions and 284 deletions

View File

@ -5,7 +5,7 @@ import "package:flutter/foundation.dart";
import "package:logging/logging.dart";
import "package:onnxruntime/onnxruntime.dart";
import "package:photos/services/machine_learning/ml_model.dart";
import 'package:photos/services/machine_learning/semantic_search/frameworks/onnx/onnx_text_tokenizer.dart';
import 'package:photos/services/machine_learning/semantic_search/clip/clip_text_tokenizer.dart';
import "package:photos/services/remote_assets_service.dart";
class ClipTextEncoder extends MlModel {

View File

@ -1,156 +0,0 @@
import "dart:async";
import "dart:io";
import "package:connectivity_plus/connectivity_plus.dart";
import "package:logging/logging.dart";
import "package:photos/core/errors.dart";
import "package:photos/core/event_bus.dart";
import "package:photos/events/event.dart";
import "package:photos/services/remote_assets_service.dart";
abstract class MLFramework {
static const kImageEncoderEnabled = true;
static const kMaximumRetrials = 3;
static final _logger = Logger("MLFramework");
final bool shouldDownloadOverMobileData;
final _initializationCompleter = Completer<void>();
InitializationState _state = InitializationState.notInitialized;
MLFramework(this.shouldDownloadOverMobileData) {
Connectivity()
.onConnectivityChanged
.listen((List<ConnectivityResult> result) async {
_logger.info("Connectivity changed to $result");
if (_state == InitializationState.waitingForNetwork &&
await _canDownload()) {
unawaited(init());
}
});
}
InitializationState get initializationState => _state;
set _initState(InitializationState state) {
Bus.instance.fire(MLFrameworkInitializationUpdateEvent(state));
_logger.info("Init state is $state");
_state = state;
}
/// Returns the path of the Image Model hosted remotely
String getImageModelRemotePath();
/// Returns the path of the Text Model hosted remotely
String getTextModelRemotePath();
/// Loads the Image Model stored at [path] into the framework
Future<void> loadImageModel(String path);
/// Loads the Text Model stored at [path] into the framework
Future<void> loadTextModel(String path);
/// Returns the Image Embedding for a file stored at [imagePath]
Future<List<double>> getImageEmbedding(String imagePath);
/// Returns the Text Embedding for [text]
Future<List<double>> getTextEmbedding(String text);
/// Downloads the models from remote, caches them and loads them into the
/// framework. Override this method if you would like to control the
/// initialization. For eg. if you wish to load the model from `/assets`
/// instead of a CDN.
Future<void> init() async {
try {
_initState = InitializationState.initializing;
await Future.wait([_initImageModel(), _initTextModel()]);
} catch (e, s) {
_logger.warning(e, s);
if (e is WiFiUnavailableError) {
return _initializationCompleter.future;
} else {
rethrow;
}
}
_initState = InitializationState.initialized;
_initializationCompleter.complete();
}
// Releases any resources held by the framework
Future<void> release() async {}
/// Returns the cosine similarity between [imageEmbedding] and [textEmbedding]
double computeScore(List<double> imageEmbedding, List<double> textEmbedding) {
assert(
imageEmbedding.length == textEmbedding.length,
"The two embeddings should have the same length",
);
double score = 0;
for (int index = 0; index < imageEmbedding.length; index++) {
score += imageEmbedding[index] * textEmbedding[index];
}
return score;
}
// ---
// Private methods
// ---
Future<void> _initImageModel() async {
if (!kImageEncoderEnabled) {
return;
}
final imageModel = await _getModel(getImageModelRemotePath());
await loadImageModel(imageModel.path);
}
Future<void> _initTextModel() async {
final textModel = await _getModel(getTextModelRemotePath());
await loadTextModel(textModel.path);
}
Future<File> _getModel(
String url, {
int trialCount = 1,
}) async {
if (await RemoteAssetsService.instance.hasAsset(url)) {
return RemoteAssetsService.instance.getAsset(url);
}
if (!await _canDownload()) {
_initState = InitializationState.waitingForNetwork;
throw WiFiUnavailableError();
}
try {
return RemoteAssetsService.instance.getAsset(url);
} catch (e, s) {
_logger.severe(e, s);
if (trialCount < kMaximumRetrials) {
return _getModel(url, trialCount: trialCount + 1);
} else {
rethrow;
}
}
}
Future<bool> _canDownload() async {
final List<ConnectivityResult> connections =
await (Connectivity().checkConnectivity());
final bool isConnectedToMobile =
connections.contains(ConnectivityResult.mobile);
return !isConnectedToMobile || shouldDownloadOverMobileData;
}
}
class MLFrameworkInitializationUpdateEvent extends Event {
final InitializationState state;
MLFrameworkInitializationUpdateEvent(this.state);
}
enum InitializationState {
notInitialized,
waitingForNetwork,
initializing,
initialized,
}

View File

@ -1,127 +0,0 @@
import "package:computer/computer.dart";
import "package:logging/logging.dart";
import "package:onnxruntime/onnxruntime.dart";
import 'package:photos/services/machine_learning/semantic_search/frameworks/ml_framework.dart';
import 'package:photos/services/machine_learning/semantic_search/frameworks/onnx/onnx_image_encoder.dart';
import 'package:photos/services/machine_learning/semantic_search/frameworks/onnx/onnx_text_encoder.dart';
import "package:photos/utils/image_isolate.dart";
class ONNX extends MLFramework {
static const kModelBucketEndpoint = "https://models.ente.io/";
static const kImageModel = "clip-image-vit-32-float32.onnx";
// static const kTextModel = "clip-text-vit-32-uint8.onnx"; // TODO: check later whether to revert back or not
static const kTextModel = "clip-text-vit-32-float32-int32.onnx";
final _computer = Computer.shared();
final _logger = Logger("ONNX");
final _clipImage = OnnxImageEncoder();
final _clipText = OnnxTextEncoder();
int _textEncoderAddress = 0;
int _imageEncoderAddress = 0;
ONNX(super.shouldDownloadOverMobileData);
@override
String getImageModelRemotePath() {
return kModelBucketEndpoint + kImageModel;
}
@override
String getTextModelRemotePath() {
return kModelBucketEndpoint + kTextModel;
}
@override
Future<void> init() async {
await _computer.compute(initOrtEnv);
await super.init();
}
@override
Future<void> loadImageModel(String path) async {
final startTime = DateTime.now();
_imageEncoderAddress = await _computer.compute(
_clipImage.loadModel,
param: {
"imageModelPath": path,
},
);
final endTime = DateTime.now();
_logger.info(
"Loading image model took: ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch).toString()}ms",
);
}
@override
Future<void> loadTextModel(String path) async {
_logger.info('loadTextModel called');
final startTime = DateTime.now();
await _clipText.initTokenizer();
_textEncoderAddress = await _computer.compute(
_clipText.loadModel,
param: {
"textModelPath": path,
},
);
final endTime = DateTime.now();
_logger.info(
"Loading text model took: ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch).toString()}ms",
);
}
@override
Future<List<double>> getImageEmbedding(String imagePath) async {
_logger.info('getImageEmbedding called');
try {
final startTime = DateTime.now();
// TODO: properly integrate with other ml later (FaceMlService)
final result = await ImageIsolate.instance.inferClipImageEmbedding(
imagePath,
_imageEncoderAddress,
);
final endTime = DateTime.now();
_logger.info(
"getImageEmbedding done in ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch)}ms",
);
return result;
} catch (e, s) {
_logger.severe(e, s);
rethrow;
}
}
@override
Future<List<double>> getTextEmbedding(String text) async {
try {
final startTime = DateTime.now();
final result = await _computer.compute(
_clipText.infer,
param: {
"text": text,
"address": _textEncoderAddress,
},
taskName: "createTextEmbedding",
) as List<double>;
final endTime = DateTime.now();
_logger.info(
"createTextEmbedding took: ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch)}ms",
);
return result;
} catch (e, s) {
_logger.severe(e, s);
rethrow;
}
}
@override
Future<void> release() async {
final session = OrtSession.fromAddress(_textEncoderAddress);
session.release();
OrtEnv.instance.release();
_logger.info('Released');
}
}
void initOrtEnv() async {
OrtEnv.instance.init();
}