mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-10-31 18:55:19 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1259 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1259 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Asterisk -- An open source telephony toolkit.
 | |
|  *
 | |
|  * Copyright 2007-2008, Sergio Fadda, Luigi Rizzo
 | |
|  *
 | |
|  * See http://www.asterisk.org for more information about
 | |
|  * the Asterisk project. Please do not directly contact
 | |
|  * any of the maintainers of this project for assistance;
 | |
|  * the project provides a web site, mailing lists and IRC
 | |
|  * channels for your use.
 | |
|  *
 | |
|  * This program is free software, distributed under the terms of
 | |
|  * the GNU General Public License Version 2. See the LICENSE file
 | |
|  * at the top of the source tree.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Video codecs support for console_video.c
 | |
|  * $Revision$
 | |
|  */
 | |
| 
 | |
| /*** MODULEINFO
 | |
| 	<support_level>extended</support_level>
 | |
|  ***/
 | |
| 
 | |
| #include "asterisk.h"
 | |
| #include "console_video.h"
 | |
| #include "asterisk/frame.h"
 | |
| #include "asterisk/utils.h"	/* ast_calloc() */
 | |
| 
 | |
| struct video_out_desc;
 | |
| struct video_dec_desc;
 | |
| struct fbuf_t;
 | |
| 
 | |
| /*
 | |
|  * Each codec is defined by a number of callbacks
 | |
|  */
 | |
| /*! \brief initialize the encoder */
 | |
| typedef int (*encoder_init_f)(AVCodecContext *v);
 | |
| 
 | |
| /*! \brief actually call the encoder */
 | |
| typedef int (*encoder_encode_f)(struct video_out_desc *v);
 | |
| 
 | |
| /*! \brief encapsulate the bistream in RTP frames */
 | |
| typedef struct ast_frame *(*encoder_encap_f)(struct fbuf_t *, int mtu,
 | |
| 		struct ast_frame **tail);
 | |
| 
 | |
| /*! \brief inizialize the decoder */
 | |
| typedef int (*decoder_init_f)(AVCodecContext *enc_ctx);
 | |
| 
 | |
| /*! \brief extract the bitstream from RTP frames and store in the fbuf.
 | |
|  * return 0 if ok, 1 on error
 | |
|  */
 | |
| typedef int (*decoder_decap_f)(struct fbuf_t *b, uint8_t *data, int len);
 | |
| 
 | |
| /*! \brief actually call the decoder */
 | |
| typedef int (*decoder_decode_f)(struct video_dec_desc *v, struct fbuf_t *b);
 | |
| 
 | |
| struct video_codec_desc {
 | |
| 	const char		*name;		/* format name */
 | |
| 	int			format;		/* AST_FORMAT_* */
 | |
| 	encoder_init_f		enc_init;
 | |
| 	encoder_encap_f		enc_encap;
 | |
| 	encoder_encode_f	enc_run;
 | |
| 	decoder_init_f		dec_init;
 | |
| 	decoder_decap_f		dec_decap;
 | |
| 	decoder_decode_f	dec_run;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Descriptor for the incoming stream, with multiple buffers for the bitstream
 | |
|  * extracted from the RTP packets, RTP reassembly info, and a frame buffer
 | |
|  * for the decoded frame (buf).
 | |
|  * The descriptor is allocated as the first frame comes in.
 | |
|  *
 | |
|  * Incoming payload is stored in one of the dec_in[] buffers, which are
 | |
|  * emptied by the video thread. These buffers are organized in a circular
 | |
|  * queue, with dec_in_cur being the buffer in use by the incoming stream,
 | |
|  * and dec_in_dpy is the one being displayed. When the pointers need to
 | |
|  * be changed, we synchronize the access to them with dec_lock.
 | |
|  * When the list is full dec_in_cur = NULL (we cannot store new data),
 | |
|  * when the list is empty dec_in_dpy = NULL (we cannot display frames).
 | |
|  */
 | |
| struct video_dec_desc {
 | |
| 	struct video_codec_desc *d_callbacks;	/* decoder callbacks */
 | |
| 	AVCodecContext          *dec_ctx;	/* information about the codec in the stream */
 | |
| 	AVCodec                 *codec;		/* reference to the codec */
 | |
| 	AVFrame                 *d_frame;	/* place to store the decoded frame */
 | |
| 	AVCodecParserContext    *parser;
 | |
| 	uint16_t 		next_seq;	/* must be 16 bit */
 | |
| 	int                     discard;	/* flag for discard status */
 | |
| #define N_DEC_IN	3	/* number of incoming buffers */
 | |
| 	struct fbuf_t		*dec_in_cur;	/* buffer being filled in */
 | |
| 	struct fbuf_t		*dec_in_dpy;	/* buffer to display */
 | |
| 	struct fbuf_t dec_in[N_DEC_IN];	/* incoming bitstream, allocated/extended in fbuf_append() */
 | |
| 	struct fbuf_t dec_out;	/* decoded frame, no buffer (data is in AVFrame) */
 | |
| };
 | |
| 
 | |
| #ifdef debugging_only
 | |
| 
 | |
| /* some debugging code to check the bitstream:
 | |
|  * declare a bit buffer, initialize it, and fetch data from it.
 | |
|  */
 | |
| struct bitbuf {
 | |
| 	const uint8_t *base;
 | |
| 	int	bitsize;	/* total size in bits */
 | |
| 	int	ofs;	/* next bit to read */
 | |
| };
 | |
| 
 | |
| static struct bitbuf bitbuf_init(const uint8_t *base, int bitsize, int start_ofs)
 | |
| {
 | |
| 	struct bitbuf a;
 | |
| 	a.base = base;
 | |
| 	a.bitsize = bitsize;
 | |
| 	a.ofs = start_ofs;
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| static int bitbuf_left(struct bitbuf *b)
 | |
| {
 | |
| 	return b->bitsize - b->ofs;
 | |
| }
 | |
| 
 | |
| static uint32_t getbits(struct bitbuf *b, int n)
 | |
| {
 | |
| 	int i, ofs;
 | |
| 	const uint8_t *d;
 | |
| 	uint8_t mask;
 | |
| 	uint32_t retval = 0;
 | |
| 	if (n> 31) {
 | |
| 		ast_log(LOG_WARNING, "too many bits %d, max 32\n", n);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (n + b->ofs > b->bitsize) {
 | |
| 		ast_log(LOG_WARNING, "bitbuf overflow %d of %d\n", n + b->ofs, b->bitsize);
 | |
| 		n = b->bitsize - b->ofs;
 | |
| 	}
 | |
| 	ofs = 7 - b->ofs % 8;	/* start from msb */
 | |
| 	mask = 1 << ofs;
 | |
| 	d = b->base + b->ofs / 8;	/* current byte */
 | |
| 	for (i=0 ; i < n; i++) {
 | |
| 		retval += retval + (*d & mask ? 1 : 0);	/* shift in new byte */
 | |
| 		b->ofs++;
 | |
| 		mask >>= 1;
 | |
| 		if (mask == 0) {
 | |
| 			d++;
 | |
| 			mask = 0x80;
 | |
| 		}
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static void check_h261(struct fbuf_t *b)
 | |
| {
 | |
| 	struct bitbuf a = bitbuf_init(b->data, b->used * 8, 0);
 | |
| 	uint32_t x, y;
 | |
| 
 | |
| 	x = getbits(&a, 20);	/* PSC, 0000 0000 0000 0001 0000 */
 | |
| 	if (x != 0x10) {
 | |
| 		ast_log(LOG_WARNING, "bad PSC 0x%x\n", x);
 | |
| 		return;
 | |
| 	}
 | |
| 	x = getbits(&a, 5);	/* temporal reference */
 | |
| 	y = getbits(&a, 6);	/* ptype */
 | |
| 	if (0)
 | |
| 	ast_log(LOG_WARNING, "size %d TR %d PTY spl %d doc %d freeze %d %sCIF hi %d\n",
 | |
| 		b->used,
 | |
| 		x,
 | |
| 		(y & 0x20) ? 1 : 0,
 | |
| 		(y & 0x10) ? 1 : 0,
 | |
| 		(y & 0x8) ? 1 : 0,
 | |
| 		(y & 0x4) ? "" : "Q",
 | |
| 		(y & 0x2) ? 1:0);
 | |
| 	while ( (x = getbits(&a, 1)) == 1)
 | |
| 		ast_log(LOG_WARNING, "PSPARE 0x%x\n", getbits(&a, 8));
 | |
| 	// ast_log(LOG_WARNING, "PSPARE 0 - start GOB LAYER\n");
 | |
| 	while ( (x = bitbuf_left(&a)) > 0) {
 | |
| 		// ast_log(LOG_WARNING, "GBSC %d bits left\n", x);
 | |
| 		x = getbits(&a, 16); /* GBSC 0000 0000 0000 0001 */
 | |
| 		if (x != 0x1) {
 | |
| 			ast_log(LOG_WARNING, "bad GBSC 0x%x\n", x);
 | |
| 			break;
 | |
| 		}
 | |
| 		x = getbits(&a, 4);	/* group number */
 | |
| 		y = getbits(&a, 5);	/* gquant */
 | |
| 		if (x == 0) {
 | |
| 			ast_log(LOG_WARNING, "  bad GN %d\n", x);
 | |
| 			break;
 | |
| 		}
 | |
| 		while ( (x = getbits(&a, 1)) == 1)
 | |
| 			ast_log(LOG_WARNING, "GSPARE 0x%x\n", getbits(&a, 8));
 | |
| 		while ( (x = bitbuf_left(&a)) > 0) { /* MB layer */
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void dump_buf(struct fbuf_t *b);
 | |
| void dump_buf(struct fbuf_t *b)
 | |
| {
 | |
| 	int i, x, last2lines;
 | |
| 	char buf[80];
 | |
| 
 | |
| 	last2lines = (b->used - 16) & ~0xf;
 | |
| 	ast_log(LOG_WARNING, "buf size %d of %d\n", b->used, b->size);
 | |
| 	for (i = 0; i < b->used; i++) {
 | |
| 		x = i & 0xf;
 | |
| 		if ( x == 0) {	/* new line */
 | |
| 			if (i != 0)
 | |
| 				ast_log(LOG_WARNING, "%s\n", buf);
 | |
| 			memset(buf, '\0', sizeof(buf));
 | |
| 			sprintf(buf, "%04x: ", (unsigned)i);
 | |
| 		}
 | |
| 		sprintf(buf + 6 + x*3, "%02hhx ", b->data[i]);
 | |
| 		if (i > 31 && i < last2lines)
 | |
| 			i = last2lines - 1;
 | |
| 	}
 | |
| 	if (buf[0])
 | |
| 		ast_log(LOG_WARNING, "%s\n", buf);
 | |
| }
 | |
| #endif /* debugging_only */
 | |
| 
 | |
| /*!
 | |
|  * Build an ast_frame for a given chunk of data, and link it into
 | |
|  * the queue, with possibly 'head' bytes at the beginning to
 | |
|  * fill in some fields later.
 | |
|  */
 | |
| static struct ast_frame *create_video_frame(uint8_t *start, uint8_t *end,
 | |
| 	               int format, int head, struct ast_frame *prev)
 | |
| {
 | |
| 	int len = end-start;
 | |
| 	uint8_t *data;
 | |
| 	struct ast_frame *f;
 | |
| 
 | |
| 	data = ast_calloc(1, len+head);
 | |
| 	f = ast_calloc(1, sizeof(*f));
 | |
| 	if (f == NULL || data == NULL) {
 | |
| 		ast_log(LOG_WARNING, "--- frame error f %p data %p len %d format %d\n",
 | |
| 				f, data, len, format);
 | |
| 		if (f)
 | |
| 			ast_free(f);
 | |
| 		if (data)
 | |
| 			ast_free(data);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	memcpy(data+head, start, len);
 | |
| 	f->data.ptr = data;
 | |
| 	f->mallocd = AST_MALLOCD_DATA | AST_MALLOCD_HDR;
 | |
| 	//f->has_timing_info = 1;
 | |
| 	//f->ts = ast_tvdiff_ms(ast_tvnow(), out->ts);
 | |
| 	f->datalen = len+head;
 | |
| 	f->frametype = AST_FRAME_VIDEO;
 | |
| 	f->subclass = format;
 | |
| 	f->samples = 0;
 | |
| 	f->offset = 0;
 | |
| 	f->src = "Console";
 | |
| 	f->delivery.tv_sec = 0;
 | |
| 	f->delivery.tv_usec = 0;
 | |
| 	f->seqno = 0;
 | |
| 	AST_LIST_NEXT(f, frame_list) = NULL;
 | |
| 
 | |
| 	if (prev)
 | |
| 	        AST_LIST_NEXT(prev, frame_list) = f;
 | |
| 
 | |
| 	return f;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Append a chunk of data to a buffer taking care of bit alignment
 | |
|  * Return 0 on success, != 0 on failure
 | |
|  */
 | |
| static int fbuf_append(struct fbuf_t *b, uint8_t *src, int len,
 | |
| 	int sbit, int ebit)
 | |
| {
 | |
| 	/*
 | |
| 	 * Allocate buffer. ffmpeg wants an extra FF_INPUT_BUFFER_PADDING_SIZE,
 | |
| 	 * and also wants 0 as a buffer terminator to prevent trouble.
 | |
| 	 */
 | |
| 	int need = len + FF_INPUT_BUFFER_PADDING_SIZE;
 | |
| 	int i;
 | |
| 	uint8_t *dst, mask;
 | |
| 
 | |
| 	if (b->data == NULL) {
 | |
| 		b->size = need;
 | |
| 		b->used = 0;
 | |
| 		b->ebit = 0;
 | |
| 		b->data = ast_calloc(1, b->size);
 | |
| 	} else if (b->used + need > b->size) {
 | |
| 		b->size = b->used + need;
 | |
| 		b->data = ast_realloc(b->data, b->size);
 | |
| 	}
 | |
| 	if (b->data == NULL) {
 | |
| 		ast_log(LOG_WARNING, "alloc failure for %d, discard\n",
 | |
| 			b->size);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (b->used == 0 && b->ebit != 0) {
 | |
| 		ast_log(LOG_WARNING, "ebit not reset at start\n");
 | |
| 		b->ebit = 0;
 | |
| 	}
 | |
| 	dst = b->data + b->used;
 | |
| 	i = b->ebit + sbit;	/* bits to ignore around */
 | |
| 	if (i == 0) {	/* easy case, just append */
 | |
| 		/* do everything in the common block */
 | |
| 	} else if (i == 8) { /* easy too, just handle the overlap byte */
 | |
| 		mask = (1 << b->ebit) - 1;
 | |
| 		/* update the last byte in the buffer */
 | |
| 		dst[-1] &= ~mask;	/* clear bits to ignore */
 | |
| 		dst[-1] |= (*src & mask);	/* append new bits */
 | |
| 		src += 1;	/* skip and prepare for common block */
 | |
| 		len --;
 | |
| 	} else {	/* must shift the new block, not done yet */
 | |
| 		ast_log(LOG_WARNING, "must handle shift %d %d at %d\n",
 | |
| 			b->ebit, sbit, b->used);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	memcpy(dst, src, len);
 | |
| 	b->used += len;
 | |
| 	b->ebit = ebit;
 | |
| 	b->data[b->used] = 0;	/* padding */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Here starts the glue code for the various supported video codecs.
 | |
|  * For each of them, we need to provide routines for initialization,
 | |
|  * calling the encoder, encapsulating the bitstream in ast_frames,
 | |
|  * extracting payload from ast_frames, and calling the decoder.
 | |
|  */
 | |
| 
 | |
| /*--- h263+ support --- */
 | |
| 
 | |
| /*! \brief initialization of h263p */
 | |
| static int h263p_enc_init(AVCodecContext *enc_ctx)
 | |
| {
 | |
| 	/* modes supported are
 | |
| 	- Unrestricted Motion Vector (annex D)
 | |
| 	- Advanced Prediction (annex F)
 | |
| 	- Advanced Intra Coding (annex I)
 | |
| 	- Deblocking Filter (annex J)
 | |
| 	- Slice Structure (annex K)
 | |
| 	- Alternative Inter VLC (annex S)
 | |
| 	- Modified Quantization (annex T)
 | |
| 	*/
 | |
| 	enc_ctx->flags |=CODEC_FLAG_H263P_UMV; /* annex D */
 | |
| 	enc_ctx->flags |=CODEC_FLAG_AC_PRED; /* annex f ? */
 | |
| 	enc_ctx->flags |=CODEC_FLAG_H263P_SLICE_STRUCT; /* annex k */
 | |
| 	enc_ctx->flags |= CODEC_FLAG_H263P_AIC; /* annex I */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Create RTP/H.263 fragments to avoid IP fragmentation. We fragment on a
 | |
|  * PSC or a GBSC, but if we don't find a suitable place just break somewhere.
 | |
|  * Everything is byte-aligned.
 | |
|  */
 | |
| static struct ast_frame *h263p_encap(struct fbuf_t *b, int mtu,
 | |
| 	struct ast_frame **tail)
 | |
| {
 | |
| 	struct ast_frame *cur = NULL, *first = NULL;
 | |
| 	uint8_t *d = b->data;
 | |
| 	int len = b->used;
 | |
| 	int l = len; /* size of the current fragment. If 0, must look for a psc */
 | |
| 
 | |
| 	for (;len > 0; len -= l, d += l) {
 | |
| 		uint8_t *data;
 | |
| 		struct ast_frame *f;
 | |
| 		int i, h;
 | |
| 
 | |
| 		if (len >= 3 && d[0] == 0 && d[1] == 0 && d[2] >= 0x80) {
 | |
| 			/* we are starting a new block, so look for a PSC. */
 | |
| 			for (i = 3; i < len - 3; i++) {
 | |
| 				if (d[i] == 0 && d[i+1] == 0 && d[i+2] >= 0x80) {
 | |
| 					l = i;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if (l > mtu || l > len) { /* psc not found, split */
 | |
| 			l = MIN(len, mtu);
 | |
| 		}
 | |
| 		if (l < 1 || l > mtu) {
 | |
| 			ast_log(LOG_WARNING, "--- frame error l %d\n", l);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (d[0] == 0 && d[1] == 0) { /* we start with a psc */
 | |
| 			h = 0;
 | |
| 		} else { /* no psc, create a header */
 | |
| 			h = 2;
 | |
| 		}
 | |
| 
 | |
| 		f = create_video_frame(d, d+l, AST_FORMAT_H263_PLUS, h, cur);
 | |
| 		if (!f)
 | |
| 			break;
 | |
| 
 | |
| 		data = f->data.ptr;
 | |
| 		if (h == 0) {	/* we start with a psc */
 | |
| 			data[0] |= 0x04;	// set P == 1, and we are done
 | |
| 		} else {	/* no psc, create a header */
 | |
| 			data[0] = data[1] = 0;	// P == 0
 | |
| 		}
 | |
| 
 | |
| 		if (!cur)
 | |
| 			first = f;
 | |
| 		cur = f;
 | |
| 	}
 | |
| 
 | |
| 	if (cur)
 | |
| 		cur->subclass |= 1; // RTP Marker
 | |
| 
 | |
| 	*tail = cur;	/* end of the list */
 | |
| 	return first;
 | |
| }
 | |
| 
 | |
| /*! \brief extract the bitstreem from the RTP payload.
 | |
|  * This is format dependent.
 | |
|  * For h263+, the format is defined in RFC 2429
 | |
|  * and basically has a fixed 2-byte header as follows:
 | |
|  * 5 bits	RR	reserved, shall be 0
 | |
|  * 1 bit	P	indicate a start/end condition,
 | |
|  *			in which case the payload should be prepended
 | |
|  *			by two zero-valued bytes.
 | |
|  * 1 bit	V	there is an additional VRC header after this header
 | |
|  * 6 bits	PLEN	length in bytes of extra picture header
 | |
|  * 3 bits	PEBIT	how many bits to be ignored in the last byte
 | |
|  *
 | |
|  * XXX the code below is not complete.
 | |
|  */
 | |
| static int h263p_decap(struct fbuf_t *b, uint8_t *data, int len)
 | |
| {
 | |
| 	int PLEN;
 | |
| 
 | |
| 	if (len < 2) {
 | |
| 		ast_log(LOG_WARNING, "invalid framesize %d\n", len);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	PLEN = ( (data[0] & 1) << 5 ) | ( (data[1] & 0xf8) >> 3);
 | |
| 
 | |
| 	if (PLEN > 0) {
 | |
| 		data += PLEN;
 | |
| 		len -= PLEN;
 | |
| 	}
 | |
| 	if (data[0] & 4)	/* bit P */
 | |
| 		data[0] = data[1] = 0;
 | |
| 	else {
 | |
| 		data += 2;
 | |
| 		len -= 2;
 | |
| 	}
 | |
| 	return fbuf_append(b, data, len, 0, 0);	/* ignore trail bits */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * generic encoder, used by the various protocols supported here.
 | |
|  * We assume that the buffer is empty at the beginning.
 | |
|  */
 | |
| static int ffmpeg_encode(struct video_out_desc *v)
 | |
| {
 | |
| 	struct fbuf_t *b = &v->enc_out;
 | |
| 	int i;
 | |
| 
 | |
| 	b->used = avcodec_encode_video(v->enc_ctx, b->data, b->size, v->enc_in_frame);
 | |
| 	i = avcodec_encode_video(v->enc_ctx, b->data + b->used, b->size - b->used, NULL); /* delayed frames ? */
 | |
| 	if (i > 0) {
 | |
| 		ast_log(LOG_WARNING, "have %d more bytes\n", i);
 | |
| 		b->used += i;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic decoder, which is used by h263p, h263 and h261 as it simply
 | |
|  * invokes ffmpeg's decoder.
 | |
|  * av_parser_parse should merge a randomly chopped up stream into
 | |
|  * proper frames. After that, if we have a valid frame, we decode it
 | |
|  * until the entire frame is processed.
 | |
|  */
 | |
| static int ffmpeg_decode(struct video_dec_desc *v, struct fbuf_t *b)
 | |
| {
 | |
| 	uint8_t *src = b->data;
 | |
| 	int srclen = b->used;
 | |
| 	int full_frame = 0;
 | |
| 
 | |
| 	if (srclen == 0)	/* no data */
 | |
| 		return 0;
 | |
| 	while (srclen) {
 | |
| 		uint8_t *data;
 | |
| 		int datalen, ret;
 | |
| 		int len = av_parser_parse(v->parser, v->dec_ctx, &data, &datalen, src, srclen, 0, 0);
 | |
| 
 | |
| 		src += len;
 | |
| 		srclen -= len;
 | |
| 		/* The parser might return something it cannot decode, so it skips
 | |
| 		 * the block returning no data
 | |
| 		 */
 | |
| 		if (data == NULL || datalen == 0)
 | |
| 			continue;
 | |
| 		ret = avcodec_decode_video(v->dec_ctx, v->d_frame, &full_frame, data, datalen);
 | |
| 		if (full_frame == 1)	/* full frame */
 | |
| 			break;
 | |
| 		if (ret < 0) {
 | |
| 			ast_log(LOG_NOTICE, "Error decoding\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (srclen != 0)	/* update b with leftover data */
 | |
| 		memmove(b->data, src, srclen);
 | |
| 	b->used = srclen;
 | |
| 	b->ebit = 0;
 | |
| 	return full_frame;
 | |
| }
 | |
| 
 | |
| static struct video_codec_desc h263p_codec = {
 | |
| 	.name = "h263p",
 | |
| 	.format = AST_FORMAT_H263_PLUS,
 | |
| 	.enc_init = h263p_enc_init,
 | |
| 	.enc_encap = h263p_encap,
 | |
| 	.enc_run = ffmpeg_encode,
 | |
| 	.dec_init = NULL,
 | |
| 	.dec_decap = h263p_decap,
 | |
| 	.dec_run = ffmpeg_decode
 | |
| };
 | |
| 
 | |
| /*--- Plain h263 support --------*/
 | |
| 
 | |
| static int h263_enc_init(AVCodecContext *enc_ctx)
 | |
| {
 | |
| 	/* XXX check whether these are supported */
 | |
| 	enc_ctx->flags |= CODEC_FLAG_H263P_UMV;
 | |
| 	enc_ctx->flags |= CODEC_FLAG_H263P_AIC;
 | |
| 	enc_ctx->flags |= CODEC_FLAG_H263P_SLICE_STRUCT;
 | |
| 	enc_ctx->flags |= CODEC_FLAG_AC_PRED;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * h263 encapsulation is specified in RFC2190. There are three modes
 | |
|  * defined (A, B, C), with 4, 8 and 12 bytes of header, respectively.
 | |
|  * The header is made as follows
 | |
|  *     0.....................|.......................|.............|....31
 | |
|  *	F:1 P:1 SBIT:3 EBIT:3 SRC:3 I:1 U:1 S:1 A:1 R:4 DBQ:2 TRB:3 TR:8
 | |
|  * FP = 0- mode A, (only one word of header)
 | |
|  * FP = 10 mode B, and also means this is an I or P frame
 | |
|  * FP = 11 mode C, and also means this is a PB frame.
 | |
|  * SBIT, EBIT nuber of bits to ignore at beginning (msbits) and end (lsbits)
 | |
|  * SRC  bits 6,7,8 from the h263 PTYPE field
 | |
|  * I = 0 intra-coded, 1 = inter-coded (bit 9 from PTYPE)
 | |
|  * U = 1 for Unrestricted Motion Vector (bit 10 from PTYPE)
 | |
|  * S = 1 for Syntax Based Arith coding (bit 11 from PTYPE)
 | |
|  * A = 1 for Advanced Prediction (bit 12 from PTYPE)
 | |
|  * R = reserved, must be 0
 | |
|  * DBQ = differential quantization, DBQUANT from h263, 0 unless we are using
 | |
|  *	PB frames
 | |
|  * TRB = temporal reference for bframes, also 0 unless this is a PB frame
 | |
|  * TR = temporal reference for P frames, also 0 unless PB frame.
 | |
|  *
 | |
|  * Mode B and mode C description omitted.
 | |
|  *
 | |
|  * An RTP frame can start with a PSC 0000 0000 0000 0000 1000 0
 | |
|  * or with a GBSC, which also has the first 17 bits as a PSC.
 | |
|  * Note - PSC are byte-aligned, GOB not necessarily. PSC start with
 | |
|  *	PSC:22 0000 0000 0000 0000 1000 00 	picture start code
 | |
|  *	TR:8   .... ....			temporal reference
 | |
|  *      PTYPE:13 or more 			ptype...
 | |
|  * If we don't fragment a GOB SBIT and EBIT = 0.
 | |
|  * reference, 8 bit)
 | |
|  *
 | |
|  * The assumption below is that we start with a PSC.
 | |
|  */
 | |
| static struct ast_frame *h263_encap(struct fbuf_t *b, int mtu,
 | |
| 		struct ast_frame **tail)
 | |
| {
 | |
| 	uint8_t *d = b->data;
 | |
| 	int start = 0, i, len = b->used;
 | |
| 	struct ast_frame *f, *cur = NULL, *first = NULL;
 | |
| 	const int pheader_len = 4;	/* Use RFC-2190 Mode A */
 | |
| 	uint8_t h263_hdr[12];	/* worst case, room for a type c header */
 | |
| 	uint8_t *h = h263_hdr;	/* shorthand */
 | |
| 
 | |
| #define H263_MIN_LEN	6
 | |
| 	if (len < H263_MIN_LEN)	/* unreasonably small */
 | |
| 		return NULL;
 | |
| 
 | |
| 	memset(h263_hdr, '\0', sizeof(h263_hdr));
 | |
| 	/* Now set the header bytes. Only type A by now,
 | |
| 	 * and h[0] = h[2] = h[3] = 0 by default.
 | |
| 	 * PTYPE starts 30 bits in the picture, so the first useful
 | |
| 	 * bit for us is bit 36 i.e. within d[4] (0 is the msbit).
 | |
| 	 * SRC = d[4] & 0x1c goes into data[1] & 0xe0
 | |
| 	 * I   = d[4] & 0x02 goes into data[1] & 0x10
 | |
| 	 * U   = d[4] & 0x01 goes into data[1] & 0x08
 | |
| 	 * S   = d[5] & 0x80 goes into data[1] & 0x04
 | |
| 	 * A   = d[5] & 0x40 goes into data[1] & 0x02
 | |
| 	 * R   = 0           goes into data[1] & 0x01
 | |
| 	 * Optimizing it, we have
 | |
| 	 */
 | |
| 	h[1] = ( (d[4] & 0x1f) << 3 ) |	/* SRC, I, U */
 | |
| 		( (d[5] & 0xc0) >> 5 );		/* S, A, R */
 | |
| 
 | |
| 	/* now look for the next PSC or GOB header. First try to hit
 | |
| 	 * a '0' byte then look around for the 0000 0000 0000 0000 1 pattern
 | |
| 	 * which is both in the PSC and the GBSC.
 | |
| 	 */
 | |
| 	for (i = H263_MIN_LEN, start = 0; start < len; start = i, i += 3) {
 | |
| 		//ast_log(LOG_WARNING, "search at %d of %d/%d\n", i, start, len);
 | |
| 		for (; i < len ; i++) {
 | |
| 			uint8_t x, rpos, lpos;
 | |
| 			int rpos_i;	/* index corresponding to rpos */
 | |
| 			if (d[i] != 0)		/* cannot be in a GBSC */
 | |
| 				continue;
 | |
| 			if (i > len - 1)
 | |
| 				break;
 | |
| 			x = d[i+1];
 | |
| 			if (x == 0)	/* next is equally good */
 | |
| 				continue;
 | |
| 			/* see if around us we can make 16 '0' bits for the GBSC.
 | |
| 			 * Look for the first bit set on the right, and then
 | |
| 			 * see if we have enough 0 on the left.
 | |
| 			 * We are guaranteed to end before rpos == 0
 | |
| 			 */
 | |
| 			for (rpos = 0x80, rpos_i = 8; rpos; rpos >>= 1, rpos_i--)
 | |
| 				if (x & rpos)	/* found the '1' bit in GBSC */
 | |
| 					break;
 | |
| 			x = d[i-1];		/* now look behind */
 | |
| 			for (lpos = rpos; lpos ; lpos >>= 1)
 | |
| 				if (x & lpos)	/* too early, not a GBSC */
 | |
| 					break;
 | |
| 			if (lpos)		/* as i said... */
 | |
| 				continue;
 | |
| 			/* now we have a GBSC starting somewhere in d[i-1],
 | |
| 			 * but it might be not byte-aligned
 | |
| 			 */
 | |
| 			if (rpos == 0x80) {	/* lucky case */
 | |
| 				i = i - 1;
 | |
| 			} else {	/* XXX to be completed */
 | |
| 				ast_log(LOG_WARNING, "unaligned GBSC 0x%x %d\n",
 | |
| 					rpos, rpos_i);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		/* This frame is up to offset i (not inclusive).
 | |
| 		 * We do not split it yet even if larger than MTU.
 | |
| 		 */
 | |
| 		f = create_video_frame(d + start, d+i, AST_FORMAT_H263,
 | |
| 				pheader_len, cur);
 | |
| 
 | |
| 		if (!f)
 | |
| 			break;
 | |
| 		memmove(f->data.ptr, h, 4);	/* copy the h263 header */
 | |
| 		/* XXX to do: if not aligned, fix sbit and ebit,
 | |
| 		 * then move i back by 1 for the next frame
 | |
| 		 */
 | |
| 		if (!cur)
 | |
| 			first = f;
 | |
| 		cur = f;
 | |
| 	}
 | |
| 
 | |
| 	if (cur)
 | |
| 		cur->subclass |= 1;	// RTP Marker
 | |
| 
 | |
| 	*tail = cur;
 | |
| 	return first;
 | |
| }
 | |
| 
 | |
| /* XXX We only drop the header here, but maybe we need more. */
 | |
| static int h263_decap(struct fbuf_t *b, uint8_t *data, int len)
 | |
| {
 | |
| 	if (len < 4) {
 | |
| 		ast_log(LOG_WARNING, "invalid framesize %d\n", len);
 | |
| 		return 1;	/* error */
 | |
| 	}
 | |
| 
 | |
| 	if ( (data[0] & 0x80) == 0) {
 | |
| 		len -= 4;
 | |
| 		data += 4;
 | |
| 	} else {
 | |
| 		ast_log(LOG_WARNING, "unsupported mode 0x%x\n",
 | |
| 			data[0]);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return fbuf_append(b, data, len, 0, 0);	/* XXX no bit alignment support yet */
 | |
| }
 | |
| 
 | |
| static struct video_codec_desc h263_codec = {
 | |
| 	.name = "h263",
 | |
| 	.format = AST_FORMAT_H263,
 | |
| 	.enc_init = h263_enc_init,
 | |
| 	.enc_encap = h263_encap,
 | |
| 	.enc_run = ffmpeg_encode,
 | |
| 	.dec_init = NULL,
 | |
| 	.dec_decap = h263_decap,
 | |
| 	.dec_run = ffmpeg_decode
 | |
| 
 | |
| };
 | |
| 
 | |
| /*---- h261 support -----*/
 | |
| static int h261_enc_init(AVCodecContext *enc_ctx)
 | |
| {
 | |
| 	/* It is important to set rtp_payload_size = 0, otherwise
 | |
| 	 * ffmpeg in h261 mode will produce output that it cannot parse.
 | |
| 	 * Also try to send I frames more frequently than with other codecs.
 | |
| 	 */
 | |
| 	enc_ctx->rtp_payload_size = 0; /* important - ffmpeg fails otherwise */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The encapsulation of H261 is defined in RFC4587 which obsoletes RFC2032
 | |
|  * The bitstream is preceded by a 32-bit header word:
 | |
|  *  SBIT:3 EBIT:3 I:1 V:1 GOBN:4 MBAP:5 QUANT:5 HMVD:5 VMVD:5
 | |
|  * SBIT and EBIT are the bits to be ignored at beginning and end,
 | |
|  * I=1 if the stream has only INTRA frames - cannot change during the stream.
 | |
|  * V=0 if motion vector is not used. Cannot change.
 | |
|  * GOBN is the GOB number in effect at the start of packet, 0 if we
 | |
|  *	start with a GOB header
 | |
|  * QUANT is the quantizer in effect, 0 if we start with GOB header
 | |
|  * HMVD  reference horizontal motion vector. 10000 is forbidden
 | |
|  * VMVD  reference vertical motion vector, as above.
 | |
|  * Packetization should occur at GOB boundaries, and if not possible
 | |
|  * with MacroBlock fragmentation. However it is likely that blocks
 | |
|  * are not bit-aligned so we must take care of this.
 | |
|  */
 | |
| static struct ast_frame *h261_encap(struct fbuf_t *b, int mtu,
 | |
| 		struct ast_frame **tail)
 | |
| {
 | |
| 	uint8_t *d = b->data;
 | |
| 	int start = 0, i, len = b->used;
 | |
| 	struct ast_frame *f, *cur = NULL, *first = NULL;
 | |
| 	const int pheader_len = 4;
 | |
| 	uint8_t h261_hdr[4];
 | |
| 	uint8_t *h = h261_hdr;	/* shorthand */
 | |
| 	int sbit = 0, ebit = 0;
 | |
| 
 | |
| #define H261_MIN_LEN 10
 | |
| 	if (len < H261_MIN_LEN)	/* unreasonably small */
 | |
| 		return NULL;
 | |
| 
 | |
| 	memset(h261_hdr, '\0', sizeof(h261_hdr));
 | |
| 
 | |
| 	/* Similar to the code in h263_encap, but the marker there is longer.
 | |
| 	 * Start a few bytes within the bitstream to avoid hitting the marker
 | |
| 	 * twice. Note we might access the buffer at len, but this is ok because
 | |
| 	 * the caller has it oversized.
 | |
| 	 */
 | |
| 	for (i = H261_MIN_LEN, start = 0; start < len - 1; start = i, i += 4) {
 | |
| #if 0	/* test - disable packetization */
 | |
| 		i = len;	/* wrong... */
 | |
| #else
 | |
| 		int found = 0, found_ebit = 0;	/* last GBSC position found */
 | |
| 		for (; i < len ; i++) {
 | |
| 			uint8_t x, rpos, lpos;
 | |
| 			if (d[i] != 0)		/* cannot be in a GBSC */
 | |
| 				continue;
 | |
| 			x = d[i+1];
 | |
| 			if (x == 0)	/* next is equally good */
 | |
| 				continue;
 | |
| 			/* See if around us we find 15 '0' bits for the GBSC.
 | |
| 			 * Look for the first bit set on the right, and then
 | |
| 			 * see if we have enough 0 on the left.
 | |
| 			 * We are guaranteed to end before rpos == 0
 | |
| 			 */
 | |
| 			for (rpos = 0x80, ebit = 7; rpos; ebit--, rpos >>= 1)
 | |
| 				if (x & rpos)	/* found the '1' bit in GBSC */
 | |
| 					break;
 | |
| 			x = d[i-1];		/* now look behind */
 | |
| 			for (lpos = (rpos >> 1); lpos ; lpos >>= 1)
 | |
| 				if (x & lpos)	/* too early, not a GBSC */
 | |
| 					break;
 | |
| 			if (lpos)		/* as i said... */
 | |
| 				continue;
 | |
| 			/* now we have a GBSC starting somewhere in d[i-1],
 | |
| 			 * but it might be not byte-aligned. Just remember it.
 | |
| 			 */
 | |
| 			if (i - start > mtu) /* too large, stop now */
 | |
| 				break;
 | |
| 			found_ebit = ebit;
 | |
| 			found = i;
 | |
| 			i += 4;	/* continue forward */
 | |
| 		}
 | |
| 		if (i >= len) {	/* trim if we went too forward */
 | |
| 			i = len;
 | |
| 			ebit = 0;	/* hopefully... should ask the bitstream ? */
 | |
| 		}
 | |
| 		if (i - start > mtu && found) {
 | |
| 			/* use the previous GBSC, hope is within the mtu */
 | |
| 			i = found;
 | |
| 			ebit = found_ebit;
 | |
| 		}
 | |
| #endif /* test */
 | |
| 		if (i - start < 4)	/* XXX too short ? */
 | |
| 			continue;
 | |
| 		/* This frame is up to offset i (not inclusive).
 | |
| 		 * We do not split it yet even if larger than MTU.
 | |
| 		 */
 | |
| 		f = create_video_frame(d + start, d+i, AST_FORMAT_H261,
 | |
| 				pheader_len, cur);
 | |
| 
 | |
| 		if (!f)
 | |
| 			break;
 | |
| 		/* recompute header with I=0, V=1 */
 | |
| 		h[0] = ( (sbit & 7) << 5 ) | ( (ebit & 7) << 2 ) | 1;
 | |
| 		memmove(f->data.ptr, h, 4);	/* copy the h261 header */
 | |
| 		if (ebit)	/* not aligned, restart from previous byte */
 | |
| 			i--;
 | |
| 		sbit = (8 - ebit) & 7;
 | |
| 		ebit = 0;
 | |
| 		if (!cur)
 | |
| 			first = f;
 | |
| 		cur = f;
 | |
| 	}
 | |
| 	if (cur)
 | |
| 		cur->subclass |= 1;	// RTP Marker
 | |
| 
 | |
| 	*tail = cur;
 | |
| 	return first;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pieces might be unaligned so we really need to put them together.
 | |
|  */
 | |
| static int h261_decap(struct fbuf_t *b, uint8_t *data, int len)
 | |
| {
 | |
| 	int ebit, sbit;
 | |
| 
 | |
| 	if (len < 8) {
 | |
| 		ast_log(LOG_WARNING, "invalid framesize %d\n", len);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	sbit = (data[0] >> 5) & 7;
 | |
| 	ebit = (data[0] >> 2) & 7;
 | |
| 	len -= 4;
 | |
| 	data += 4;
 | |
| 	return fbuf_append(b, data, len, sbit, ebit);
 | |
| }
 | |
| 
 | |
| static struct video_codec_desc h261_codec = {
 | |
| 	.name = "h261",
 | |
| 	.format = AST_FORMAT_H261,
 | |
| 	.enc_init = h261_enc_init,
 | |
| 	.enc_encap = h261_encap,
 | |
| 	.enc_run = ffmpeg_encode,
 | |
| 	.dec_init = NULL,
 | |
| 	.dec_decap = h261_decap,
 | |
| 	.dec_run = ffmpeg_decode
 | |
| };
 | |
| 
 | |
| /* mpeg4 support */
 | |
| static int mpeg4_enc_init(AVCodecContext *enc_ctx)
 | |
| {
 | |
| #if 0
 | |
| 	//enc_ctx->flags |= CODEC_FLAG_LOW_DELAY; /*don't use b frames ?*/
 | |
| 	enc_ctx->flags |= CODEC_FLAG_AC_PRED;
 | |
| 	enc_ctx->flags |= CODEC_FLAG_H263P_UMV;
 | |
| 	enc_ctx->flags |= CODEC_FLAG_QPEL;
 | |
| 	enc_ctx->flags |= CODEC_FLAG_4MV;
 | |
| 	enc_ctx->flags |= CODEC_FLAG_GMC;
 | |
| 	enc_ctx->flags |= CODEC_FLAG_LOOP_FILTER;
 | |
| 	enc_ctx->flags |= CODEC_FLAG_H263P_SLICE_STRUCT;
 | |
| #endif
 | |
| 	enc_ctx->rtp_payload_size = 0; /* important - ffmpeg fails otherwise */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* simplistic encapsulation - just split frames in mtu-size units */
 | |
| static struct ast_frame *mpeg4_encap(struct fbuf_t *b, int mtu,
 | |
| 	struct ast_frame **tail)
 | |
| {
 | |
| 	struct ast_frame *f, *cur = NULL, *first = NULL;
 | |
| 	uint8_t *d = b->data;
 | |
| 	uint8_t *end = d + b->used;
 | |
| 	int len;
 | |
| 
 | |
| 	for (;d < end; d += len, cur = f) {
 | |
| 		len = MIN(mtu, end - d);
 | |
| 		f = create_video_frame(d, d + len, AST_FORMAT_MP4_VIDEO, 0, cur);
 | |
| 		if (!f)
 | |
| 			break;
 | |
| 		if (!first)
 | |
| 			first = f;
 | |
| 	}
 | |
| 	if (cur)
 | |
| 		cur->subclass |= 1;
 | |
| 	*tail = cur;
 | |
| 	return first;
 | |
| }
 | |
| 
 | |
| static int mpeg4_decap(struct fbuf_t *b, uint8_t *data, int len)
 | |
| {
 | |
| 	return fbuf_append(b, data, len, 0, 0);
 | |
| }
 | |
| 
 | |
| static int mpeg4_decode(struct video_dec_desc *v, struct fbuf_t *b)
 | |
| {
 | |
| 	int full_frame = 0, datalen = b->used;
 | |
| 	int ret = avcodec_decode_video(v->dec_ctx, v->d_frame, &full_frame,
 | |
| 		b->data, datalen);
 | |
| 	if (ret < 0) {
 | |
| 		ast_log(LOG_NOTICE, "Error decoding\n");
 | |
| 		ret = datalen; /* assume we used everything. */
 | |
| 	}
 | |
| 	datalen -= ret;
 | |
| 	if (datalen > 0)	/* update b with leftover bytes */
 | |
| 		memmove(b->data, b->data + ret, datalen);
 | |
| 	b->used = datalen;
 | |
| 	b->ebit = 0;
 | |
| 	return full_frame;
 | |
| }
 | |
| 
 | |
| static struct video_codec_desc mpeg4_codec = {
 | |
| 	.name = "mpeg4",
 | |
| 	.format = AST_FORMAT_MP4_VIDEO,
 | |
| 	.enc_init = mpeg4_enc_init,
 | |
| 	.enc_encap = mpeg4_encap,
 | |
| 	.enc_run = ffmpeg_encode,
 | |
| 	.dec_init = NULL,
 | |
| 	.dec_decap = mpeg4_decap,
 | |
| 	.dec_run = mpeg4_decode
 | |
| };
 | |
| 
 | |
| static int h264_enc_init(AVCodecContext *enc_ctx)
 | |
| {
 | |
| 	enc_ctx->flags |= CODEC_FLAG_TRUNCATED;
 | |
| 	//enc_ctx->flags |= CODEC_FLAG_GLOBAL_HEADER;
 | |
| 	//enc_ctx->flags2 |= CODEC_FLAG2_FASTPSKIP;
 | |
| 	/* TODO: Maybe we need to add some other flags */
 | |
| 	enc_ctx->rtp_mode = 0;
 | |
| 	enc_ctx->rtp_payload_size = 0;
 | |
| 	enc_ctx->bit_rate_tolerance = enc_ctx->bit_rate;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int h264_dec_init(AVCodecContext *dec_ctx)
 | |
| {
 | |
| 	dec_ctx->flags |= CODEC_FLAG_TRUNCATED;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The structure of a generic H.264 stream is:
 | |
|  * - 0..n 0-byte(s), unused, optional. one zero-byte is always present
 | |
|  *   in the first NAL before the start code prefix.
 | |
|  * - start code prefix (3 bytes): 0x000001
 | |
|  *   (the first bytestream has a
 | |
|  *   like these 0x00000001!)
 | |
|  * - NAL header byte ( F[1] | NRI[2] | Type[5] ) where type != 0
 | |
|  * - byte-stream
 | |
|  * - 0..n 0-byte(s) (padding, unused).
 | |
|  * Segmentation in RTP only needs to be done on start code prefixes.
 | |
|  * If fragments are too long... we don't support it yet.
 | |
|  * - encapsulate (or fragment) the byte-stream (with NAL header included)
 | |
|  */
 | |
| static struct ast_frame *h264_encap(struct fbuf_t *b, int mtu,
 | |
| 	struct ast_frame **tail)
 | |
| {
 | |
| 	struct ast_frame *f = NULL, *cur = NULL, *first = NULL;
 | |
| 	uint8_t *d, *start = b->data;
 | |
| 	uint8_t *end = start + b->used;
 | |
| 
 | |
| 	/* Search the first start code prefix - ITU-T H.264 sec. B.2,
 | |
| 	 * and move start right after that, on the NAL header byte.
 | |
| 	 */
 | |
| #define HAVE_NAL(x) (x[-4] == 0 && x[-3] == 0 && x[-2] == 0 && x[-1] == 1)
 | |
| 	for (start += 4; start < end; start++) {
 | |
| 		int ty = start[0] & 0x1f;
 | |
| 		if (HAVE_NAL(start) && ty != 0 && ty != 31)
 | |
| 			break;
 | |
| 	}
 | |
| 	/* if not found, or too short, we just skip the next loop and are done. */
 | |
| 
 | |
| 	/* Here follows the main loop to create frames. Search subsequent start
 | |
| 	 * codes, and then possibly fragment the unit into smaller fragments.
 | |
| 	 */
 | |
|    for (;start < end - 4; start = d) {
 | |
| 	int size;		/* size of current block */
 | |
| 	uint8_t hdr[2];		/* add-on header when fragmenting */
 | |
| 	int ty = 0;
 | |
| 
 | |
| 	/* now search next nal */
 | |
| 	for (d = start + 4; d < end; d++) {
 | |
| 		ty = d[0] & 0x1f;
 | |
| 		if (HAVE_NAL(d))
 | |
| 			break;	/* found NAL */
 | |
| 	}
 | |
| 	/* have a block to send. d past the start code unless we overflow */
 | |
| 	if (d >= end) {	/* NAL not found */
 | |
| 		d = end + 4;
 | |
| 	} else if (ty == 0 || ty == 31) { /* found but invalid type, skip */
 | |
| 		ast_log(LOG_WARNING, "skip invalid nal type %d at %d of %d\n",
 | |
| 			ty, d - (uint8_t *)b->data, b->used);
 | |
| 		continue;
 | |
| 	}
 | |
| 
 | |
| 	size = d - start - 4;	/* don't count the end */
 | |
| 
 | |
| 	if (size < mtu) {	// test - don't fragment
 | |
| 		// Single NAL Unit
 | |
| 		f = create_video_frame(start, d - 4, AST_FORMAT_H264, 0, cur);
 | |
| 		if (!f)
 | |
| 			break;
 | |
| 		if (!first)
 | |
| 			first = f;
 | |
| 
 | |
| 		cur = f;
 | |
| 		continue;
 | |
| 	}
 | |
| 
 | |
| 	// Fragmented Unit (Mode A: no DON, very weak)
 | |
| 	hdr[0] = (*start & 0xe0) | 28;	/* mark as a fragmentation unit */
 | |
| 	hdr[1] = (*start++ & 0x1f) | 0x80 ;	/* keep type and set START bit */
 | |
| 	size--;		/* skip the NAL header */
 | |
| 	while (size) {
 | |
| 		uint8_t *data;
 | |
| 		int frag_size = MIN(size, mtu);
 | |
| 
 | |
| 		f = create_video_frame(start, start+frag_size, AST_FORMAT_H264, 2, cur);
 | |
| 		if (!f)
 | |
| 			break;
 | |
| 		size -= frag_size;	/* skip this data block */
 | |
| 		start += frag_size;
 | |
| 
 | |
| 		data = f->data.ptr;
 | |
| 		data[0] = hdr[0];
 | |
| 		data[1] = hdr[1] | (size == 0 ? 0x40 : 0);	/* end bit if we are done */
 | |
| 		hdr[1] &= ~0x80;	/* clear start bit for subsequent frames */
 | |
| 		if (!first)
 | |
| 			first = f;
 | |
| 		cur = f;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| 	if (cur)
 | |
| 		cur->subclass |= 1;     // RTP Marker
 | |
| 
 | |
| 	*tail = cur;
 | |
| 
 | |
| 	return first;
 | |
| }
 | |
| 
 | |
| static int h264_decap(struct fbuf_t *b, uint8_t *data, int len)
 | |
| {
 | |
| 	/* Start Code Prefix (Annex B in specification) */
 | |
| 	uint8_t scp[] = { 0x00, 0x00, 0x00, 0x01 };
 | |
| 	int retval = 0;
 | |
| 	int type, ofs = 0;
 | |
| 
 | |
| 	if (len < 2) {
 | |
| 		ast_log(LOG_WARNING, "--- invalid len %d\n", len);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	/* first of all, check if the packet has F == 0 */
 | |
| 	if (data[0] & 0x80) {
 | |
| 		ast_log(LOG_WARNING, "--- forbidden packet; nal: %02hhx\n",
 | |
| 			data[0]);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	type = data[0] & 0x1f;
 | |
| 	switch (type) {
 | |
| 	case 0:
 | |
| 	case 31:
 | |
| 		ast_log(LOG_WARNING, "--- invalid type: %d\n", type);
 | |
| 		return 1;
 | |
| 	case 24:
 | |
| 	case 25:
 | |
| 	case 26:
 | |
| 	case 27:
 | |
| 	case 29:
 | |
| 		ast_log(LOG_WARNING, "--- encapsulation not supported : %d\n", type);
 | |
| 		return 1;
 | |
| 	case 28:	/* FU-A Unit */
 | |
| 		if (data[1] & 0x80) { // S == 1, import F and NRI from next
 | |
| 			data[1] &= 0x1f;	/* preserve type */
 | |
| 			data[1] |= (data[0] & 0xe0);	/* import F & NRI */
 | |
| 			retval = fbuf_append(b, scp, sizeof(scp), 0, 0);
 | |
| 			ofs = 1;
 | |
| 		} else {
 | |
| 			ofs = 2;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:	/* From 1 to 23 (Single NAL Unit) */
 | |
| 		retval = fbuf_append(b, scp, sizeof(scp), 0, 0);
 | |
| 	}
 | |
| 	if (!retval)
 | |
| 		retval = fbuf_append(b, data + ofs, len - ofs, 0, 0);
 | |
| 	if (retval)
 | |
| 		ast_log(LOG_WARNING, "result %d\n", retval);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static struct video_codec_desc h264_codec = {
 | |
| 	.name = "h264",
 | |
| 	.format = AST_FORMAT_H264,
 | |
| 	.enc_init = h264_enc_init,
 | |
| 	.enc_encap = h264_encap,
 | |
| 	.enc_run = ffmpeg_encode,
 | |
| 	.dec_init = h264_dec_init,
 | |
| 	.dec_decap = h264_decap,
 | |
| 	.dec_run = ffmpeg_decode
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Table of translation between asterisk and ffmpeg formats.
 | |
|  * We need also a field for read and write (encoding and decoding), because
 | |
|  * e.g. H263+ uses different codec IDs in ffmpeg when encoding or decoding.
 | |
|  */
 | |
| struct _cm {    /* map ffmpeg codec types to asterisk formats */
 | |
| 	uint32_t	ast_format;	/* 0 is a terminator */
 | |
| 	enum CodecID	codec;
 | |
| 	enum { CM_RD = 1, CM_WR = 2, CM_RDWR = 3 } rw;  /* read or write or both ? */
 | |
| 	//struct video_codec_desc *codec_desc;
 | |
| };
 | |
| 
 | |
| static const struct _cm video_formats[] = {
 | |
|         { AST_FORMAT_H263_PLUS, CODEC_ID_H263,  CM_RD }, /* incoming H263P ? */
 | |
|         { AST_FORMAT_H263_PLUS, CODEC_ID_H263P, CM_WR },
 | |
|         { AST_FORMAT_H263,      CODEC_ID_H263,  CM_RD },
 | |
|         { AST_FORMAT_H263,      CODEC_ID_H263,  CM_WR },
 | |
|         { AST_FORMAT_H261,      CODEC_ID_H261,  CM_RDWR },
 | |
|         { AST_FORMAT_H264,      CODEC_ID_H264,  CM_RDWR },
 | |
|         { AST_FORMAT_MP4_VIDEO, CODEC_ID_MPEG4, CM_RDWR },
 | |
|         { 0,                    0, 0 },
 | |
| };
 | |
| 
 | |
| 
 | |
| /*! \brief map an asterisk format into an ffmpeg one */
 | |
| static enum CodecID map_video_format(uint32_t ast_format, int rw)
 | |
| {
 | |
| 	struct _cm *i;
 | |
| 
 | |
| 	for (i = video_formats; i->ast_format != 0; i++)
 | |
| 		if (ast_format & i->ast_format && rw & i->rw) {
 | |
| 			return i->codec;
 | |
| 		}
 | |
| 	return CODEC_ID_NONE;
 | |
| }
 | |
| 
 | |
| /* pointers to supported codecs. We assume the first one to be non null. */
 | |
| static const struct video_codec_desc *supported_codecs[] = {
 | |
| 	&h263p_codec,
 | |
| 	&h264_codec,
 | |
| 	&h263_codec,
 | |
| 	&h261_codec,
 | |
| 	&mpeg4_codec,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Map the AST_FORMAT to the library. If not recognised, fail.
 | |
|  * This is useful in the input path where we get frames.
 | |
|  */
 | |
| static struct video_codec_desc *map_video_codec(int fmt)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; supported_codecs[i]; i++)
 | |
| 		if (fmt == supported_codecs[i]->format) {
 | |
| 			ast_log(LOG_WARNING, "using %s for format 0x%x\n",
 | |
| 				supported_codecs[i]->name, fmt);
 | |
| 			return supported_codecs[i];
 | |
| 		}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*! \brief uninitialize the descriptor for remote video stream */
 | |
| static struct video_dec_desc *dec_uninit(struct video_dec_desc *v)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (v == NULL)		/* not initialized yet */
 | |
| 		return NULL;
 | |
| 	if (v->parser) {
 | |
| 		av_parser_close(v->parser);
 | |
| 		v->parser = NULL;
 | |
| 	}
 | |
| 	if (v->dec_ctx) {
 | |
| 		avcodec_close(v->dec_ctx);
 | |
| 		av_free(v->dec_ctx);
 | |
| 		v->dec_ctx = NULL;
 | |
| 	}
 | |
| 	if (v->d_frame) {
 | |
| 		av_free(v->d_frame);
 | |
| 		v->d_frame = NULL;
 | |
| 	}
 | |
| 	v->codec = NULL;	/* only a reference */
 | |
| 	v->d_callbacks = NULL;		/* forget the decoder */
 | |
| 	v->discard = 1;		/* start in discard mode */
 | |
| 	for (i = 0; i < N_DEC_IN; i++)
 | |
| 		fbuf_free(&v->dec_in[i]);
 | |
| 	fbuf_free(&v->dec_out);
 | |
| 	ast_free(v);
 | |
| 	return NULL;	/* error, in case someone cares */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * initialize ffmpeg resources used for decoding frames from the network.
 | |
|  */
 | |
| static struct video_dec_desc *dec_init(uint32_t the_ast_format)
 | |
| {
 | |
| 	enum CodecID codec;
 | |
| 	struct video_dec_desc *v = ast_calloc(1, sizeof(*v));
 | |
| 	if (v == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	v->discard = 1;
 | |
| 
 | |
| 	v->d_callbacks = map_video_codec(the_ast_format);
 | |
| 	if (v->d_callbacks == NULL) {
 | |
| 		ast_log(LOG_WARNING, "cannot find video codec, drop input 0x%x\n", the_ast_format);
 | |
| 		return dec_uninit(v);
 | |
| 	}
 | |
| 
 | |
| 	codec = map_video_format(v->d_callbacks->format, CM_RD);
 | |
| 
 | |
| 	v->codec = avcodec_find_decoder(codec);
 | |
| 	if (!v->codec) {
 | |
| 		ast_log(LOG_WARNING, "Unable to find the decoder for format %d\n", codec);
 | |
| 		return dec_uninit(v);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Initialize the codec context.
 | |
| 	 */
 | |
| 	v->dec_ctx = avcodec_alloc_context();
 | |
| 	if (!v->dec_ctx) {
 | |
| 		ast_log(LOG_WARNING, "Cannot allocate the decoder context\n");
 | |
| 		return dec_uninit(v);
 | |
| 	}
 | |
| 	/* XXX call dec_init() ? */
 | |
| 	if (avcodec_open(v->dec_ctx, v->codec) < 0) {
 | |
| 		ast_log(LOG_WARNING, "Cannot open the decoder context\n");
 | |
| 		av_free(v->dec_ctx);
 | |
| 		v->dec_ctx = NULL;
 | |
| 		return dec_uninit(v);
 | |
| 	}
 | |
| 
 | |
| 	v->parser = av_parser_init(codec);
 | |
| 	if (!v->parser) {
 | |
| 		ast_log(LOG_WARNING, "Cannot initialize the decoder parser\n");
 | |
| 		return dec_uninit(v);
 | |
| 	}
 | |
| 
 | |
| 	v->d_frame = avcodec_alloc_frame();
 | |
| 	if (!v->d_frame) {
 | |
| 		ast_log(LOG_WARNING, "Cannot allocate decoding video frame\n");
 | |
| 		return dec_uninit(v);
 | |
| 	}
 | |
|         v->dec_in_cur = &v->dec_in[0];	/* buffer for incoming frames */
 | |
|         v->dec_in_dpy = NULL;      /* nothing to display */
 | |
| 
 | |
| 	return v;	/* ok */
 | |
| }
 | |
| /*------ end codec specific code -----*/
 |