mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-10-26 06:26:41 +00:00 
			
		
		
		
	git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@7221 65c4cc65-6c06-0410-ace0-fbb531ad65f3
		
			
				
	
	
		
			265 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /******************************************************************
 | |
| 
 | |
|     iLBC Speech Coder ANSI-C Source Code
 | |
| 
 | |
|     lsf.c 
 | |
| 
 | |
|     Copyright (C) The Internet Society (2004). 
 | |
|     All Rights Reserved.
 | |
| 
 | |
| ******************************************************************/
 | |
| 
 | |
| #include <string.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #include "iLBC_define.h"
 | |
| #include "lsf.h"
 | |
| 
 | |
| /*----------------------------------------------------------------*
 | |
|  *  conversion from lpc coefficients to lsf coefficients 
 | |
|  *---------------------------------------------------------------*/
 | |
| 
 | |
| void a2lsf( 
 | |
|     float *freq,/* (o) lsf coefficients */
 | |
|     float *a    /* (i) lpc coefficients */
 | |
| ){
 | |
|     float steps[LSF_NUMBER_OF_STEPS] = 
 | |
|         {(float)0.00635, (float)0.003175, (float)0.0015875, 
 | |
|         (float)0.00079375};
 | |
|     float step;
 | |
|     int step_idx;
 | |
|     int lsp_index;  
 | |
|     float p[LPC_HALFORDER];
 | |
|     float q[LPC_HALFORDER];
 | |
|     float p_pre[LPC_HALFORDER];
 | |
| 
 | |
| 
 | |
|     float q_pre[LPC_HALFORDER];
 | |
|     float old_p, old_q, *old;
 | |
|     float *pq_coef; 
 | |
|     float omega, old_omega;
 | |
|     int i;
 | |
|     float hlp, hlp1, hlp2, hlp3, hlp4, hlp5;
 | |
| 
 | |
|     for (i=0; i<LPC_HALFORDER; i++) {
 | |
|         p[i] = (float)-1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]);
 | |
|         q[i] = a[LPC_FILTERORDER - i] - a[i + 1];
 | |
|     }
 | |
|     
 | |
|     p_pre[0] = (float)-1.0 - p[0];
 | |
|     p_pre[1] = - p_pre[0] - p[1];
 | |
|     p_pre[2] = - p_pre[1] - p[2];
 | |
|     p_pre[3] = - p_pre[2] - p[3];
 | |
|     p_pre[4] = - p_pre[3] - p[4];
 | |
|     p_pre[4] = p_pre[4] / 2;
 | |
|     
 | |
|     q_pre[0] = (float)1.0 - q[0];
 | |
|     q_pre[1] = q_pre[0] - q[1];
 | |
|     q_pre[2] = q_pre[1] - q[2];
 | |
|     q_pre[3] = q_pre[2] - q[3];
 | |
|     q_pre[4] = q_pre[3] - q[4];
 | |
|     q_pre[4] = q_pre[4] / 2;
 | |
|     
 | |
|     omega = 0.0;
 | |
|     old_omega = 0.0;
 | |
| 
 | |
|     old_p = FLOAT_MAX;
 | |
|     old_q = FLOAT_MAX;
 | |
|     
 | |
|     /* Here we loop through lsp_index to find all the 
 | |
|        LPC_FILTERORDER roots for omega. */  
 | |
| 
 | |
|     for (lsp_index = 0; lsp_index<LPC_FILTERORDER; lsp_index++) {
 | |
|         
 | |
|         /* Depending on lsp_index being even or odd, we 
 | |
|         alternatively solve the roots for the two LSP equations. */
 | |
| 
 | |
|         
 | |
|         if ((lsp_index & 0x1) == 0) {
 | |
|             pq_coef = p_pre;
 | |
|             old = &old_p;
 | |
|         } else {
 | |
|             pq_coef = q_pre;
 | |
|             old = &old_q;
 | |
|         }
 | |
|         
 | |
|         /* Start with low resolution grid */
 | |
| 
 | |
|         for (step_idx = 0, step = steps[step_idx]; 
 | |
|             step_idx < LSF_NUMBER_OF_STEPS;){
 | |
|             
 | |
| 
 | |
| 
 | |
|             /*  cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) + 
 | |
|             pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */
 | |
| 
 | |
|             hlp = (float)cos(omega * TWO_PI);
 | |
|             hlp1 = (float)2.0 * hlp + pq_coef[0];
 | |
|             hlp2 = (float)2.0 * hlp * hlp1 - (float)1.0 + 
 | |
|                 pq_coef[1];
 | |
|             hlp3 = (float)2.0 * hlp * hlp2 - hlp1 + pq_coef[2];
 | |
|             hlp4 = (float)2.0 * hlp * hlp3 - hlp2 + pq_coef[3];
 | |
|             hlp5 = hlp * hlp4 - hlp3 + pq_coef[4];
 | |
|             
 | |
|             
 | |
|             if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)){
 | |
|                 
 | |
|                 if (step_idx == (LSF_NUMBER_OF_STEPS - 1)){
 | |
|                     
 | |
|                     if (fabs(hlp5) >= fabs(*old)) {
 | |
|                         freq[lsp_index] = omega - step;
 | |
|                     } else {
 | |
|                         freq[lsp_index] = omega;
 | |
|                     }   
 | |
|                     
 | |
|                     
 | |
|                     if ((*old) >= 0.0){
 | |
|                         *old = (float)-1.0 * FLOAT_MAX;
 | |
|                     } else {
 | |
|                         *old = FLOAT_MAX;
 | |
|                     }
 | |
| 
 | |
|                     omega = old_omega;
 | |
|                     step_idx = 0;
 | |
|                     
 | |
|                     step_idx = LSF_NUMBER_OF_STEPS;
 | |
|                 } else {
 | |
|                     
 | |
|                     if (step_idx == 0) {
 | |
|                         old_omega = omega;
 | |
|                     }
 | |
| 
 | |
|                     step_idx++;
 | |
|                     omega -= steps[step_idx];
 | |
| 
 | |
|                     /* Go back one grid step */
 | |
| 
 | |
|                     step = steps[step_idx];
 | |
|                 }
 | |
|             } else {
 | |
|                 
 | |
|             /* increment omega until they are of different sign, 
 | |
|             and we know there is at least one root between omega 
 | |
|             and old_omega */
 | |
|                 *old = hlp5;
 | |
|                 omega += step;
 | |
|             }
 | |
| 
 | |
| 
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i<LPC_FILTERORDER; i++) {
 | |
|         freq[i] = freq[i] * TWO_PI;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*
 | |
|  *  conversion from lsf coefficients to lpc coefficients 
 | |
|  *---------------------------------------------------------------*/
 | |
| 
 | |
| void lsf2a( 
 | |
|     float *a_coef,  /* (o) lpc coefficients */
 | |
|     float *freq     /* (i) lsf coefficients */
 | |
| ){
 | |
|     int i, j;
 | |
|     float hlp;
 | |
|     float p[LPC_HALFORDER], q[LPC_HALFORDER];
 | |
|     float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER],
 | |
|         a2[LPC_HALFORDER];
 | |
|     float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER], 
 | |
|         b2[LPC_HALFORDER];
 | |
| 
 | |
|     for (i=0; i<LPC_FILTERORDER; i++) {
 | |
|         freq[i] = freq[i] * PI2;
 | |
|     }
 | |
| 
 | |
|     /* Check input for ill-conditioned cases.  This part is not 
 | |
|     found in the TIA standard.  It involves the following 2 IF 
 | |
|     blocks. If "freq" is judged ill-conditioned, then we first 
 | |
|     modify freq[0] and freq[LPC_HALFORDER-1] (normally 
 | |
|     LPC_HALFORDER = 10 for LPC applications), then we adjust 
 | |
|     the other "freq" values slightly */
 | |
| 
 | |
|     
 | |
|     if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)){
 | |
| 
 | |
|         
 | |
|         if (freq[0] <= 0.0) {
 | |
|             freq[0] = (float)0.022;
 | |
|         }
 | |
| 
 | |
|         
 | |
|         if (freq[LPC_FILTERORDER - 1] >= 0.5) {
 | |
|             freq[LPC_FILTERORDER - 1] = (float)0.499;
 | |
|         }
 | |
| 
 | |
|         hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) / 
 | |
|             (float) (LPC_FILTERORDER - 1);
 | |
| 
 | |
|         for (i=1; i<LPC_FILTERORDER; i++) {
 | |
|             freq[i] = freq[i - 1] + hlp;
 | |
|         }
 | |
| 
 | |
| 
 | |
|     }
 | |
|     
 | |
|     memset(a1, 0, LPC_HALFORDER*sizeof(float));
 | |
|     memset(a2, 0, LPC_HALFORDER*sizeof(float));
 | |
|     memset(b1, 0, LPC_HALFORDER*sizeof(float));
 | |
|     memset(b2, 0, LPC_HALFORDER*sizeof(float));
 | |
|     memset(a, 0, (LPC_HALFORDER+1)*sizeof(float));
 | |
|     memset(b, 0, (LPC_HALFORDER+1)*sizeof(float));
 | |
|         
 | |
|     /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and 
 | |
|     cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2.  
 | |
|     Note that for this code p[i] specifies the coefficients 
 | |
|     used in .Q_A(z) while q[i] specifies the coefficients used 
 | |
|     in .P_A(z) */
 | |
| 
 | |
|     for (i=0; i<LPC_HALFORDER; i++) {
 | |
|         p[i] = (float)cos(TWO_PI * freq[2 * i]);
 | |
|         q[i] = (float)cos(TWO_PI * freq[2 * i + 1]);
 | |
|     }
 | |
|     
 | |
|     a[0] = 0.25;
 | |
|     b[0] = 0.25;
 | |
|     
 | |
|     for (i= 0; i<LPC_HALFORDER; i++) {
 | |
|         a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];
 | |
|         b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];
 | |
|         a2[i] = a1[i];
 | |
|         a1[i] = a[i];
 | |
|         b2[i] = b1[i];
 | |
|         b1[i] = b[i];
 | |
|     }
 | |
|     
 | |
|     for (j=0; j<LPC_FILTERORDER; j++) {
 | |
|         
 | |
|         if (j == 0) {
 | |
|             a[0] = 0.25;
 | |
|             b[0] = -0.25;
 | |
|         } else {
 | |
|             a[0] = b[0] = 0.0;
 | |
|         }
 | |
|         
 | |
|         for (i=0; i<LPC_HALFORDER; i++) {
 | |
|             a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];
 | |
|             b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];
 | |
|             a2[i] = a1[i];
 | |
|             a1[i] = a[i];
 | |
|             b2[i] = b1[i];
 | |
|             b1[i] = b[i];
 | |
|         }
 | |
| 
 | |
|         a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]);
 | |
|     }
 | |
| 
 | |
|     a_coef[0] = 1.0;
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 |