mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-11-03 20:38:59 +00:00 
			
		
		
		
	git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@7221 65c4cc65-6c06-0410-ace0-fbb531ad65f3
		
			
				
	
	
		
			666 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			666 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
/******************************************************************
 | 
						|
 | 
						|
    iLBC Speech Coder ANSI-C Source Code
 | 
						|
 | 
						|
    enhancer.c 
 | 
						|
 | 
						|
    Copyright (C) The Internet Society (2004). 
 | 
						|
    All Rights Reserved.
 | 
						|
 | 
						|
******************************************************************/
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <string.h>
 | 
						|
#include "iLBC_define.h"
 | 
						|
#include "enhancer.h"
 | 
						|
#include "constants.h"
 | 
						|
#include "filter.h"
 | 
						|
 | 
						|
/*----------------------------------------------------------------*
 | 
						|
 | 
						|
 | 
						|
 * Find index in array such that the array element with said
 | 
						|
 * index is the element of said array closest to "value" 
 | 
						|
 * according to the squared-error criterion
 | 
						|
 *---------------------------------------------------------------*/
 | 
						|
 | 
						|
static void NearestNeighbor(
 | 
						|
    int   *index,   /* (o) index of array element closest 
 | 
						|
                           to value */
 | 
						|
    float *array,   /* (i) data array */
 | 
						|
    float value,/* (i) value */
 | 
						|
    int arlength/* (i) dimension of data array */
 | 
						|
){
 | 
						|
    int i;
 | 
						|
    float bestcrit,crit;
 | 
						|
 | 
						|
    crit=array[0]-value;
 | 
						|
    bestcrit=crit*crit;
 | 
						|
    *index=0;
 | 
						|
    for (i=1; i<arlength; i++) {
 | 
						|
        crit=array[i]-value;
 | 
						|
        crit=crit*crit;
 | 
						|
        
 | 
						|
        if (crit<bestcrit) {
 | 
						|
            bestcrit=crit;
 | 
						|
            *index=i;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------*
 | 
						|
 * compute cross correlation between sequences
 | 
						|
 *---------------------------------------------------------------*/
 | 
						|
 | 
						|
static void mycorr1( 
 | 
						|
    float* corr,    /* (o) correlation of seq1 and seq2 */
 | 
						|
    float* seq1,    /* (i) first sequence */
 | 
						|
    int dim1,           /* (i) dimension first seq1 */
 | 
						|
    const float *seq2,  /* (i) second sequence */
 | 
						|
    int dim2        /* (i) dimension seq2 */
 | 
						|
){
 | 
						|
    int i,j;
 | 
						|
 | 
						|
    for (i=0; i<=dim1-dim2; i++) {
 | 
						|
        corr[i]=0.0;
 | 
						|
        for (j=0; j<dim2; j++) {
 | 
						|
            corr[i] += seq1[i+j] * seq2[j];
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------*
 | 
						|
 * upsample finite array assuming zeros outside bounds
 | 
						|
 *---------------------------------------------------------------*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static void enh_upsample( 
 | 
						|
    float* useq1,   /* (o) upsampled output sequence */
 | 
						|
    float* seq1,/* (i) unupsampled sequence */
 | 
						|
    int dim1,       /* (i) dimension seq1 */
 | 
						|
    int hfl         /* (i) polyphase filter length=2*hfl+1 */
 | 
						|
){
 | 
						|
    float *pu,*ps;
 | 
						|
    int i,j,k,q,filterlength,hfl2;
 | 
						|
    const float *polyp[ENH_UPS0]; /* pointers to 
 | 
						|
                                     polyphase columns */
 | 
						|
    const float *pp;
 | 
						|
 | 
						|
    /* define pointers for filter */
 | 
						|
 | 
						|
    filterlength=2*hfl+1;
 | 
						|
    
 | 
						|
    if ( filterlength > dim1 ) {
 | 
						|
        hfl2=(int) (dim1/2);
 | 
						|
        for (j=0; j<ENH_UPS0; j++) {
 | 
						|
            polyp[j]=polyphaserTbl+j*filterlength+hfl-hfl2;
 | 
						|
        }
 | 
						|
        hfl=hfl2;
 | 
						|
        filterlength=2*hfl+1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        for (j=0; j<ENH_UPS0; j++) {
 | 
						|
            polyp[j]=polyphaserTbl+j*filterlength;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* filtering: filter overhangs left side of sequence */
 | 
						|
 | 
						|
    pu=useq1;
 | 
						|
    for (i=hfl; i<filterlength; i++) { 
 | 
						|
        for (j=0; j<ENH_UPS0; j++) {
 | 
						|
            *pu=0.0;
 | 
						|
            pp = polyp[j];
 | 
						|
            ps = seq1+i;
 | 
						|
            for (k=0; k<=i; k++) {
 | 
						|
                *pu += *ps-- * *pp++;
 | 
						|
            }
 | 
						|
            pu++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* filtering: simple convolution=inner products */
 | 
						|
 | 
						|
    for (i=filterlength; i<dim1; i++) {
 | 
						|
        for (j=0;j<ENH_UPS0; j++){
 | 
						|
            *pu=0.0;
 | 
						|
            pp = polyp[j];
 | 
						|
            ps = seq1+i;
 | 
						|
            for (k=0; k<filterlength; k++) {
 | 
						|
                *pu += *ps-- * *pp++;
 | 
						|
 | 
						|
 | 
						|
            }
 | 
						|
            pu++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* filtering: filter overhangs right side of sequence */
 | 
						|
 | 
						|
    for (q=1; q<=hfl; q++) { 
 | 
						|
        for (j=0; j<ENH_UPS0; j++) {
 | 
						|
            *pu=0.0;
 | 
						|
            pp = polyp[j]+q;
 | 
						|
            ps = seq1+dim1-1;
 | 
						|
            for (k=0; k<filterlength-q; k++) {
 | 
						|
                *pu += *ps-- * *pp++;
 | 
						|
            }
 | 
						|
            pu++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*----------------------------------------------------------------*
 | 
						|
 * find segment starting near idata+estSegPos that has highest 
 | 
						|
 * correlation with idata+centerStartPos through 
 | 
						|
 * idata+centerStartPos+ENH_BLOCKL-1 segment is found at a 
 | 
						|
 * resolution of ENH_UPSO times the original of the original 
 | 
						|
 * sampling rate
 | 
						|
 *---------------------------------------------------------------*/
 | 
						|
 | 
						|
static void refiner(
 | 
						|
    float *seg,         /* (o) segment array */
 | 
						|
    float *updStartPos, /* (o) updated start point */
 | 
						|
    float* idata,       /* (i) original data buffer */
 | 
						|
    int idatal,         /* (i) dimension of idata */
 | 
						|
    int centerStartPos, /* (i) beginning center segment */
 | 
						|
    float estSegPos,/* (i) estimated beginning other segment */
 | 
						|
    float period    /* (i) estimated pitch period */
 | 
						|
){
 | 
						|
    int estSegPosRounded,searchSegStartPos,searchSegEndPos,corrdim;
 | 
						|
    int tloc,tloc2,i,st,en,fraction;
 | 
						|
    float vect[ENH_VECTL],corrVec[ENH_CORRDIM],maxv;
 | 
						|
    float corrVecUps[ENH_CORRDIM*ENH_UPS0];
 | 
						|
 | 
						|
    /* defining array bounds */
 | 
						|
    
 | 
						|
    estSegPosRounded=(int)(estSegPos - 0.5);
 | 
						|
 | 
						|
    searchSegStartPos=estSegPosRounded-ENH_SLOP;
 | 
						|
    
 | 
						|
    if (searchSegStartPos<0) { 
 | 
						|
        searchSegStartPos=0;
 | 
						|
    }
 | 
						|
    searchSegEndPos=estSegPosRounded+ENH_SLOP;
 | 
						|
    
 | 
						|
 | 
						|
 | 
						|
    if (searchSegEndPos+ENH_BLOCKL >= idatal) { 
 | 
						|
        searchSegEndPos=idatal-ENH_BLOCKL-1;
 | 
						|
    }
 | 
						|
    corrdim=searchSegEndPos-searchSegStartPos+1;
 | 
						|
    
 | 
						|
    /* compute upsampled correlation (corr33) and find 
 | 
						|
       location of max */
 | 
						|
 | 
						|
    mycorr1(corrVec,idata+searchSegStartPos,
 | 
						|
        corrdim+ENH_BLOCKL-1,idata+centerStartPos,ENH_BLOCKL);
 | 
						|
    enh_upsample(corrVecUps,corrVec,corrdim,ENH_FL0);
 | 
						|
    tloc=0; maxv=corrVecUps[0];
 | 
						|
    for (i=1; i<ENH_UPS0*corrdim; i++) {
 | 
						|
        
 | 
						|
        if (corrVecUps[i]>maxv) {
 | 
						|
            tloc=i;
 | 
						|
            maxv=corrVecUps[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    /* make vector can be upsampled without ever running outside 
 | 
						|
       bounds */
 | 
						|
    
 | 
						|
    *updStartPos= (float)searchSegStartPos + 
 | 
						|
        (float)tloc/(float)ENH_UPS0+(float)1.0;
 | 
						|
    tloc2=(int)(tloc/ENH_UPS0);
 | 
						|
    
 | 
						|
    if (tloc>tloc2*ENH_UPS0) {
 | 
						|
        tloc2++;
 | 
						|
    }
 | 
						|
    st=searchSegStartPos+tloc2-ENH_FL0;
 | 
						|
    
 | 
						|
    if (st<0) {
 | 
						|
        memset(vect,0,-st*sizeof(float));
 | 
						|
        memcpy(&vect[-st],idata, (ENH_VECTL+st)*sizeof(float));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        en=st+ENH_VECTL;
 | 
						|
        
 | 
						|
        if (en>idatal) {
 | 
						|
            memcpy(vect, &idata[st], 
 | 
						|
                (ENH_VECTL-(en-idatal))*sizeof(float));
 | 
						|
            memset(&vect[ENH_VECTL-(en-idatal)], 0, 
 | 
						|
                (en-idatal)*sizeof(float));
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            memcpy(vect, &idata[st], ENH_VECTL*sizeof(float));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    fraction=tloc2*ENH_UPS0-tloc;
 | 
						|
    
 | 
						|
    /* compute the segment (this is actually a convolution) */
 | 
						|
 | 
						|
    mycorr1(seg,vect,ENH_VECTL,polyphaserTbl+(2*ENH_FL0+1)*fraction,
 | 
						|
 | 
						|
 | 
						|
        2*ENH_FL0+1);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------*
 | 
						|
 * find the smoothed output data
 | 
						|
 *---------------------------------------------------------------*/
 | 
						|
 | 
						|
static void smath(
 | 
						|
    float *odata,   /* (o) smoothed output */
 | 
						|
    float *sseq,/* (i) said second sequence of waveforms */
 | 
						|
    int hl,         /* (i) 2*hl+1 is sseq dimension */
 | 
						|
    float alpha0/* (i) max smoothing energy fraction */
 | 
						|
){
 | 
						|
    int i,k;
 | 
						|
    float w00,w10,w11,A,B,C,*psseq,err,errs;
 | 
						|
    float surround[BLOCKL_MAX]; /* shape contributed by other than 
 | 
						|
                                   current */
 | 
						|
    float wt[2*ENH_HL+1];       /* waveform weighting to get 
 | 
						|
                                   surround shape */
 | 
						|
    float denom;
 | 
						|
    
 | 
						|
    /* create shape of contribution from all waveforms except the
 | 
						|
       current one */
 | 
						|
 | 
						|
    for (i=1; i<=2*hl+1; i++) {
 | 
						|
        wt[i-1] = (float)0.5*(1 - (float)cos(2*PI*i/(2*hl+2))); 
 | 
						|
    }
 | 
						|
    wt[hl]=0.0; /* for clarity, not used */
 | 
						|
    for (i=0; i<ENH_BLOCKL; i++) {
 | 
						|
        surround[i]=sseq[i]*wt[0];
 | 
						|
    }
 | 
						|
    for (k=1; k<hl; k++) {
 | 
						|
        psseq=sseq+k*ENH_BLOCKL;
 | 
						|
        for(i=0;i<ENH_BLOCKL; i++) {
 | 
						|
            surround[i]+=psseq[i]*wt[k];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (k=hl+1; k<=2*hl; k++) {
 | 
						|
        psseq=sseq+k*ENH_BLOCKL;
 | 
						|
        for(i=0;i<ENH_BLOCKL; i++) {
 | 
						|
            surround[i]+=psseq[i]*wt[k];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    /* compute some inner products */
 | 
						|
 | 
						|
    w00 = w10 = w11 = 0.0;
 | 
						|
    psseq=sseq+hl*ENH_BLOCKL; /* current block  */
 | 
						|
    for (i=0; i<ENH_BLOCKL;i++) {
 | 
						|
        w00+=psseq[i]*psseq[i];
 | 
						|
        w11+=surround[i]*surround[i];
 | 
						|
        w10+=surround[i]*psseq[i];
 | 
						|
    }
 | 
						|
    
 | 
						|
 | 
						|
 | 
						|
    if (fabs(w11) < 1.0) {
 | 
						|
        w11=1.0;
 | 
						|
    }
 | 
						|
    C = (float)sqrt( w00/w11);
 | 
						|
    
 | 
						|
    /* first try enhancement without power-constraint */
 | 
						|
 | 
						|
    errs=0.0;
 | 
						|
    psseq=sseq+hl*ENH_BLOCKL;
 | 
						|
    for (i=0; i<ENH_BLOCKL; i++) {
 | 
						|
        odata[i]=C*surround[i];
 | 
						|
        err=psseq[i]-odata[i];
 | 
						|
        errs+=err*err;
 | 
						|
    }
 | 
						|
    
 | 
						|
    /* if constraint violated by first try, add constraint */ 
 | 
						|
    
 | 
						|
    if (errs > alpha0 * w00) {
 | 
						|
        if ( w00 < 1) {
 | 
						|
            w00=1;
 | 
						|
        }
 | 
						|
        denom = (w11*w00-w10*w10)/(w00*w00);
 | 
						|
        
 | 
						|
        if (denom > 0.0001) { /* eliminates numerical problems 
 | 
						|
                                 for if smooth */
 | 
						|
            A = (float)sqrt( (alpha0- alpha0*alpha0/4)/denom);
 | 
						|
            B = -alpha0/2 - A * w10/w00;
 | 
						|
            B = B+1;
 | 
						|
        }
 | 
						|
        else { /* essentially no difference between cycles; 
 | 
						|
                  smoothing not needed */
 | 
						|
            A= 0.0;
 | 
						|
            B= 1.0;
 | 
						|
        }
 | 
						|
        
 | 
						|
        /* create smoothed sequence */
 | 
						|
 | 
						|
        psseq=sseq+hl*ENH_BLOCKL;
 | 
						|
        for (i=0; i<ENH_BLOCKL; i++) {
 | 
						|
            odata[i]=A*surround[i]+B*psseq[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------*
 | 
						|
 * get the pitch-synchronous sample sequence
 | 
						|
 *---------------------------------------------------------------*/
 | 
						|
 | 
						|
static void getsseq(
 | 
						|
    float *sseq,    /* (o) the pitch-synchronous sequence */
 | 
						|
    float *idata,       /* (i) original data */
 | 
						|
    int idatal,         /* (i) dimension of data */
 | 
						|
    int centerStartPos, /* (i) where current block starts */
 | 
						|
    float *period,      /* (i) rough-pitch-period array */
 | 
						|
 | 
						|
 | 
						|
    float *plocs,       /* (i) where periods of period array 
 | 
						|
                               are taken */
 | 
						|
    int periodl,    /* (i) dimension period array */
 | 
						|
    int hl              /* (i) 2*hl+1 is the number of sequences */
 | 
						|
){
 | 
						|
    int i,centerEndPos,q;
 | 
						|
    float blockStartPos[2*ENH_HL+1];
 | 
						|
    int lagBlock[2*ENH_HL+1];
 | 
						|
    float plocs2[ENH_PLOCSL]; 
 | 
						|
    float *psseq;
 | 
						|
 | 
						|
    centerEndPos=centerStartPos+ENH_BLOCKL-1;
 | 
						|
    
 | 
						|
    /* present */
 | 
						|
 | 
						|
    NearestNeighbor(lagBlock+hl,plocs,
 | 
						|
        (float)0.5*(centerStartPos+centerEndPos),periodl);
 | 
						|
    
 | 
						|
    blockStartPos[hl]=(float)centerStartPos;
 | 
						|
    psseq=sseq+ENH_BLOCKL*hl;
 | 
						|
    memcpy(psseq, idata+centerStartPos, ENH_BLOCKL*sizeof(float));
 | 
						|
    
 | 
						|
    /* past */
 | 
						|
 | 
						|
    for (q=hl-1; q>=0; q--) {
 | 
						|
        blockStartPos[q]=blockStartPos[q+1]-period[lagBlock[q+1]];
 | 
						|
        NearestNeighbor(lagBlock+q,plocs,
 | 
						|
            blockStartPos[q]+
 | 
						|
            ENH_BLOCKL_HALF-period[lagBlock[q+1]], periodl);
 | 
						|
                            
 | 
						|
        
 | 
						|
        if (blockStartPos[q]-ENH_OVERHANG>=0) {
 | 
						|
            refiner(sseq+q*ENH_BLOCKL, blockStartPos+q, idata,
 | 
						|
                idatal, centerStartPos, blockStartPos[q],
 | 
						|
                period[lagBlock[q+1]]);
 | 
						|
        } else {
 | 
						|
            psseq=sseq+q*ENH_BLOCKL;
 | 
						|
            memset(psseq, 0, ENH_BLOCKL*sizeof(float));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    /* future */
 | 
						|
 | 
						|
    for (i=0; i<periodl; i++) {
 | 
						|
        plocs2[i]=plocs[i]-period[i];
 | 
						|
    }
 | 
						|
    for (q=hl+1; q<=2*hl; q++) { 
 | 
						|
        NearestNeighbor(lagBlock+q,plocs2,
 | 
						|
            blockStartPos[q-1]+ENH_BLOCKL_HALF,periodl);
 | 
						|
 | 
						|
        blockStartPos[q]=blockStartPos[q-1]+period[lagBlock[q]];
 | 
						|
        if (blockStartPos[q]+ENH_BLOCKL+ENH_OVERHANG<idatal) {
 | 
						|
            refiner(sseq+ENH_BLOCKL*q, blockStartPos+q, idata,
 | 
						|
                idatal, centerStartPos, blockStartPos[q],
 | 
						|
 | 
						|
 | 
						|
                period[lagBlock[q]]);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            psseq=sseq+q*ENH_BLOCKL;
 | 
						|
            memset(psseq, 0, ENH_BLOCKL*sizeof(float));
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------*
 | 
						|
 * perform enhancement on idata+centerStartPos through 
 | 
						|
 * idata+centerStartPos+ENH_BLOCKL-1
 | 
						|
 *---------------------------------------------------------------*/
 | 
						|
 | 
						|
static void enhancer(
 | 
						|
    float *odata,       /* (o) smoothed block, dimension blockl */
 | 
						|
    float *idata,       /* (i) data buffer used for enhancing */
 | 
						|
    int idatal,         /* (i) dimension idata */
 | 
						|
    int centerStartPos, /* (i) first sample current block 
 | 
						|
                               within idata */
 | 
						|
    float alpha0,       /* (i) max correction-energy-fraction 
 | 
						|
                              (in [0,1]) */
 | 
						|
    float *period,      /* (i) pitch period array */
 | 
						|
    float *plocs,       /* (i) locations where period array 
 | 
						|
                               values valid */
 | 
						|
    int periodl         /* (i) dimension of period and plocs */
 | 
						|
){
 | 
						|
    float sseq[(2*ENH_HL+1)*ENH_BLOCKL];
 | 
						|
 | 
						|
    /* get said second sequence of segments */
 | 
						|
 | 
						|
    getsseq(sseq,idata,idatal,centerStartPos,period,
 | 
						|
        plocs,periodl,ENH_HL);
 | 
						|
 | 
						|
    /* compute the smoothed output from said second sequence */
 | 
						|
 | 
						|
    smath(odata,sseq,ENH_HL,alpha0);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------*
 | 
						|
 * cross correlation
 | 
						|
 *---------------------------------------------------------------*/
 | 
						|
 | 
						|
float xCorrCoef( 
 | 
						|
    float *target,      /* (i) first array */
 | 
						|
    float *regressor,   /* (i) second array */
 | 
						|
    int subl        /* (i) dimension arrays */
 | 
						|
){
 | 
						|
    int i;
 | 
						|
    float ftmp1, ftmp2;
 | 
						|
        
 | 
						|
    ftmp1 = 0.0;
 | 
						|
    ftmp2 = 0.0;
 | 
						|
 | 
						|
 | 
						|
    for (i=0; i<subl; i++) {
 | 
						|
        ftmp1 += target[i]*regressor[i];
 | 
						|
        ftmp2 += regressor[i]*regressor[i]; 
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (ftmp1 > 0.0) {
 | 
						|
        return (float)(ftmp1*ftmp1/ftmp2);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return (float)0.0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------*
 | 
						|
 * interface for enhancer
 | 
						|
 *---------------------------------------------------------------*/
 | 
						|
 | 
						|
int enhancerInterface(
 | 
						|
    float *out,                     /* (o) enhanced signal */
 | 
						|
    float *in,                      /* (i) unenhanced signal */
 | 
						|
    iLBC_Dec_Inst_t *iLBCdec_inst   /* (i) buffers etc */
 | 
						|
){
 | 
						|
    float *enh_buf, *enh_period;
 | 
						|
    int iblock, isample;
 | 
						|
    int lag=0, ilag, i, ioffset;
 | 
						|
    float cc, maxcc;
 | 
						|
    float ftmp1, ftmp2;
 | 
						|
    float *inPtr, *enh_bufPtr1, *enh_bufPtr2;
 | 
						|
    float plc_pred[ENH_BLOCKL];
 | 
						|
 | 
						|
    float lpState[6], downsampled[(ENH_NBLOCKS*ENH_BLOCKL+120)/2];
 | 
						|
    int inLen=ENH_NBLOCKS*ENH_BLOCKL+120;
 | 
						|
    int start, plc_blockl, inlag;
 | 
						|
 | 
						|
    enh_buf=iLBCdec_inst->enh_buf;
 | 
						|
    enh_period=iLBCdec_inst->enh_period;
 | 
						|
    
 | 
						|
    memmove(enh_buf, &enh_buf[iLBCdec_inst->blockl], 
 | 
						|
        (ENH_BUFL-iLBCdec_inst->blockl)*sizeof(float));
 | 
						|
                                                            
 | 
						|
    memcpy(&enh_buf[ENH_BUFL-iLBCdec_inst->blockl], in, 
 | 
						|
        iLBCdec_inst->blockl*sizeof(float));
 | 
						|
 | 
						|
    if (iLBCdec_inst->mode==30)
 | 
						|
        plc_blockl=ENH_BLOCKL;
 | 
						|
    else
 | 
						|
        plc_blockl=40;
 | 
						|
 | 
						|
    /* when 20 ms frame, move processing one block */
 | 
						|
    ioffset=0;
 | 
						|
    if (iLBCdec_inst->mode==20) ioffset=1;
 | 
						|
 | 
						|
    i=3-ioffset;
 | 
						|
    memmove(enh_period, &enh_period[i], 
 | 
						|
 | 
						|
 | 
						|
        (ENH_NBLOCKS_TOT-i)*sizeof(float));
 | 
						|
 | 
						|
    /* Set state information to the 6 samples right before 
 | 
						|
       the samples to be downsampled. */
 | 
						|
 | 
						|
    memcpy(lpState, 
 | 
						|
        enh_buf+(ENH_NBLOCKS_EXTRA+ioffset)*ENH_BLOCKL-126, 
 | 
						|
        6*sizeof(float));
 | 
						|
 | 
						|
    /* Down sample a factor 2 to save computations */
 | 
						|
 | 
						|
    DownSample(enh_buf+(ENH_NBLOCKS_EXTRA+ioffset)*ENH_BLOCKL-120,
 | 
						|
                lpFilt_coefsTbl, inLen-ioffset*ENH_BLOCKL,
 | 
						|
                lpState, downsampled);
 | 
						|
 | 
						|
    /* Estimate the pitch in the down sampled domain. */
 | 
						|
    for (iblock = 0; iblock<ENH_NBLOCKS-ioffset; iblock++) {
 | 
						|
        
 | 
						|
        lag = 10;
 | 
						|
        maxcc = xCorrCoef(downsampled+60+iblock*
 | 
						|
            ENH_BLOCKL_HALF, downsampled+60+iblock*
 | 
						|
            ENH_BLOCKL_HALF-lag, ENH_BLOCKL_HALF);
 | 
						|
        for (ilag=11; ilag<60; ilag++) {
 | 
						|
            cc = xCorrCoef(downsampled+60+iblock*
 | 
						|
                ENH_BLOCKL_HALF, downsampled+60+iblock*
 | 
						|
                ENH_BLOCKL_HALF-ilag, ENH_BLOCKL_HALF);
 | 
						|
            
 | 
						|
            if (cc > maxcc) {
 | 
						|
                maxcc = cc;
 | 
						|
                lag = ilag;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Store the estimated lag in the non-downsampled domain */
 | 
						|
        enh_period[iblock+ENH_NBLOCKS_EXTRA+ioffset] = (float)lag*2;
 | 
						|
 | 
						|
 | 
						|
    }   
 | 
						|
 | 
						|
 | 
						|
    /* PLC was performed on the previous packet */
 | 
						|
    if (iLBCdec_inst->prev_enh_pl==1) {
 | 
						|
 | 
						|
        inlag=(int)enh_period[ENH_NBLOCKS_EXTRA+ioffset];
 | 
						|
 | 
						|
        lag = inlag-1;
 | 
						|
        maxcc = xCorrCoef(in, in+lag, plc_blockl);
 | 
						|
        for (ilag=inlag; ilag<=inlag+1; ilag++) {
 | 
						|
            cc = xCorrCoef(in, in+ilag, plc_blockl);
 | 
						|
            
 | 
						|
            if (cc > maxcc) {
 | 
						|
                maxcc = cc;
 | 
						|
                lag = ilag;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
 | 
						|
        enh_period[ENH_NBLOCKS_EXTRA+ioffset-1]=(float)lag;
 | 
						|
 | 
						|
        /* compute new concealed residual for the old lookahead,
 | 
						|
           mix the forward PLC with a backward PLC from 
 | 
						|
           the new frame */
 | 
						|
        
 | 
						|
        inPtr=&in[lag-1];
 | 
						|
        
 | 
						|
        enh_bufPtr1=&plc_pred[plc_blockl-1];
 | 
						|
        
 | 
						|
        if (lag>plc_blockl) {
 | 
						|
            start=plc_blockl;
 | 
						|
        } else {
 | 
						|
            start=lag;
 | 
						|
        }
 | 
						|
 | 
						|
        for (isample = start; isample>0; isample--) {
 | 
						|
            *enh_bufPtr1-- = *inPtr--;
 | 
						|
        }
 | 
						|
        
 | 
						|
        enh_bufPtr2=&enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl];
 | 
						|
        for (isample = (plc_blockl-1-lag); isample>=0; isample--) 
 | 
						|
{
 | 
						|
            *enh_bufPtr1-- = *enh_bufPtr2--;
 | 
						|
        }
 | 
						|
 | 
						|
        /* limit energy change */
 | 
						|
        ftmp2=0.0;
 | 
						|
        ftmp1=0.0;
 | 
						|
        for (i=0;i<plc_blockl;i++) {
 | 
						|
            ftmp2+=enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl-i]*
 | 
						|
                enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl-i];
 | 
						|
            ftmp1+=plc_pred[i]*plc_pred[i];
 | 
						|
        }
 | 
						|
        ftmp1=(float)sqrt(ftmp1/(float)plc_blockl);
 | 
						|
        ftmp2=(float)sqrt(ftmp2/(float)plc_blockl);
 | 
						|
        if (ftmp1>(float)2.0*ftmp2 && ftmp1>0.0) {
 | 
						|
            for (i=0;i<plc_blockl-10;i++) {
 | 
						|
                plc_pred[i]*=(float)2.0*ftmp2/ftmp1;
 | 
						|
            }
 | 
						|
            for (i=plc_blockl-10;i<plc_blockl;i++) {
 | 
						|
                plc_pred[i]*=(float)(i-plc_blockl+10)*
 | 
						|
                    ((float)1.0-(float)2.0*ftmp2/ftmp1)/(float)(10)+
 | 
						|
                    (float)2.0*ftmp2/ftmp1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    
 | 
						|
        enh_bufPtr1=&enh_buf[ENH_BUFL-1-iLBCdec_inst->blockl];
 | 
						|
        for (i=0; i<plc_blockl; i++) {
 | 
						|
            ftmp1 = (float) (i+1) / (float) (plc_blockl+1);
 | 
						|
            *enh_bufPtr1 *= ftmp1;
 | 
						|
            *enh_bufPtr1 += ((float)1.0-ftmp1)*
 | 
						|
                                plc_pred[plc_blockl-1-i];
 | 
						|
            enh_bufPtr1--;
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    if (iLBCdec_inst->mode==20) {
 | 
						|
        /* Enhancer with 40 samples delay */
 | 
						|
        for (iblock = 0; iblock<2; iblock++) {
 | 
						|
            enhancer(out+iblock*ENH_BLOCKL, enh_buf, 
 | 
						|
                ENH_BUFL, (5+iblock)*ENH_BLOCKL+40,
 | 
						|
                ENH_ALPHA0, enh_period, enh_plocsTbl, 
 | 
						|
                    ENH_NBLOCKS_TOT);
 | 
						|
        }
 | 
						|
    } else if (iLBCdec_inst->mode==30) {
 | 
						|
        /* Enhancer with 80 samples delay */
 | 
						|
        for (iblock = 0; iblock<3; iblock++) {
 | 
						|
            enhancer(out+iblock*ENH_BLOCKL, enh_buf, 
 | 
						|
                ENH_BUFL, (4+iblock)*ENH_BLOCKL,
 | 
						|
                ENH_ALPHA0, enh_period, enh_plocsTbl, 
 | 
						|
                    ENH_NBLOCKS_TOT);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return (lag*2);
 | 
						|
}
 | 
						|
 | 
						|
 |