mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-10-31 18:55:19 +00:00 
			
		
		
		
	#72 - Should eliminate probs on VMWI #41 - Dynamic add survives reload #73 - Make festival honor its arguments #93 - Make events on FXO interfaces more logical #26 - Prefer "bindaddr" to logical address for registrations ??? - Record crashes AGI git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@1338 65c4cc65-6c06-0410-ace0-fbb531ad65f3
		
			
				
	
	
		
			254 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			254 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
|  
 | |
| /****************************************************************** 
 | |
|  
 | |
|     iLBC Speech Coder ANSI-C Source Code 
 | |
|  
 | |
|     lsf.c  
 | |
|  
 | |
|     Copyright (c) 2001, 
 | |
|     Global IP Sound AB. 
 | |
|     All rights reserved. 
 | |
|  
 | |
| ******************************************************************/ 
 | |
|  
 | |
| #include <string.h> 
 | |
| #include <math.h> 
 | |
|  
 | |
| #include "iLBC_define.h" 
 | |
| #include "lsf.h"
 | |
|  
 | |
| /*----------------------------------------------------------------* 
 | |
|  *  conversion from lpc coefficients to lsf coefficients  
 | |
|  *---------------------------------------------------------------*/ 
 | |
|  
 | |
| void a2lsf(  
 | |
|     float *freq,/* (o) lsf coefficients */ 
 | |
|     float *a    /* (i) lpc coefficients */ 
 | |
| ){ 
 | |
|     float steps[LSF_NUMBER_OF_STEPS] =  
 | |
|         {(float)0.00635, (float)0.003175, (float)0.0015875,  
 | |
|         (float)0.00079375}; 
 | |
|     float step; 
 | |
|     int step_idx; 
 | |
|     int lsp_index;   
 | |
|     float p[LPC_HALFORDER]; 
 | |
|     float q[LPC_HALFORDER]; 
 | |
|     float p_pre[LPC_HALFORDER]; 
 | |
|     float q_pre[LPC_HALFORDER]; 
 | |
|     float old_p, old_q, *old; 
 | |
|     float *pq_coef;  
 | |
|     float omega, old_omega; 
 | |
|     int i; 
 | |
|     float hlp, hlp1, hlp2, hlp3, hlp4, hlp5; 
 | |
|  
 | |
|     for (i = 0; i < LPC_HALFORDER; i++){ 
 | |
|         p[i] = (float)-1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]); 
 | |
|         q[i] = a[LPC_FILTERORDER - i] - a[i + 1]; 
 | |
|     } 
 | |
|      
 | |
|     p_pre[0] = (float)-1.0 - p[0]; 
 | |
|     p_pre[1] = - p_pre[0] - p[1]; 
 | |
|     p_pre[2] = - p_pre[1] - p[2]; 
 | |
|     p_pre[3] = - p_pre[2] - p[3]; 
 | |
|     p_pre[4] = - p_pre[3] - p[4]; 
 | |
|     p_pre[4] = p_pre[4] / 2; 
 | |
|      
 | |
|     q_pre[0] = (float)1.0 - q[0]; 
 | |
|     q_pre[1] = q_pre[0] - q[1]; 
 | |
|     q_pre[2] = q_pre[1] - q[2]; 
 | |
|     q_pre[3] = q_pre[2] - q[3]; 
 | |
|     q_pre[4] = q_pre[3] - q[4]; 
 | |
|     q_pre[4] = q_pre[4] / 2; 
 | |
|      
 | |
|     omega = 0.0; 
 | |
|     old_omega = 0.0; 
 | |
|  
 | |
|     old_p = FLOAT_MAX; 
 | |
|     old_q = FLOAT_MAX; 
 | |
|      
 | |
|     /* Here we loop through lsp_index to find all the  
 | |
|        LPC_FILTERORDER roots for omega. */   
 | |
|  
 | |
|     for (lsp_index = 0; lsp_index < LPC_FILTERORDER; lsp_index++){ 
 | |
|          
 | |
|         /* Depending on lsp_index being even or odd, we  
 | |
|         alternatively solve the roots for the two LSP equations. */ 
 | |
|  
 | |
|          
 | |
|         if ((lsp_index & 0x1) == 0) { 
 | |
|             pq_coef = p_pre; 
 | |
|             old = &old_p; 
 | |
|         } else { 
 | |
|             pq_coef = q_pre; 
 | |
|             old = &old_q; 
 | |
|         } 
 | |
|          
 | |
|         /* Start with low resolution grid */ 
 | |
|  
 | |
|         for (step_idx = 0, step = steps[step_idx];  
 | |
|             step_idx < LSF_NUMBER_OF_STEPS;){ 
 | |
|              
 | |
|             /*  cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) +  
 | |
|             pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */ 
 | |
|  
 | |
|             hlp = (float)cos(omega * TWO_PI); 
 | |
|             hlp1 = (float)2.0 * hlp + pq_coef[0]; 
 | |
|             hlp2 = (float)2.0 * hlp * hlp1 - (float)1.0 +  
 | |
|                 pq_coef[1]; 
 | |
|             hlp3 = (float)2.0 * hlp * hlp2 - hlp1 + pq_coef[2]; 
 | |
|             hlp4 = (float)2.0 * hlp * hlp3 - hlp2 + pq_coef[3]; 
 | |
|             hlp5 = hlp * hlp4 - hlp3 + pq_coef[4]; 
 | |
|              
 | |
|              
 | |
|             if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)){ 
 | |
|                  
 | |
|                 if (step_idx == (LSF_NUMBER_OF_STEPS - 1)){ 
 | |
|                      
 | |
|                     if (fabs(hlp5) >= fabs(*old)) { 
 | |
|                         freq[lsp_index] = omega - step; 
 | |
|                     } else { 
 | |
|                         freq[lsp_index] = omega; 
 | |
|                     }    
 | |
|                      
 | |
|                      
 | |
|                     if ((*old) >= 0.0){ 
 | |
|                         *old = (float)-1.0 * FLOAT_MAX; 
 | |
|                     } else { 
 | |
|                         *old = FLOAT_MAX; 
 | |
|                     } 
 | |
|  
 | |
|                     omega = old_omega; 
 | |
|                     step_idx = 0; 
 | |
|                      
 | |
|                     step_idx = LSF_NUMBER_OF_STEPS; 
 | |
|                 } else { 
 | |
|                      
 | |
|                     if (step_idx == 0) { 
 | |
|                         old_omega = omega; 
 | |
|                     } 
 | |
|  
 | |
|                     step_idx++; 
 | |
|                     omega -= steps[step_idx]; 
 | |
|  
 | |
|                     /* Go back one grid step */ 
 | |
|  
 | |
|                     step = steps[step_idx]; 
 | |
|                 } 
 | |
|             } else { 
 | |
|                  
 | |
|             /* increment omega until they are of different sign,  
 | |
|             and we know there is at least one root between omega  
 | |
|             and old_omega */ 
 | |
|                 *old = hlp5; 
 | |
|                 omega += step; 
 | |
|             } 
 | |
|         } 
 | |
|     } 
 | |
|  
 | |
|     for (i = 0; i < LPC_FILTERORDER; i++) { 
 | |
|         freq[i] = freq[i] * TWO_PI; 
 | |
|     } 
 | |
| } 
 | |
|  
 | |
| /*----------------------------------------------------------------* 
 | |
|  *  conversion from lsf coefficients to lpc coefficients  
 | |
|  *---------------------------------------------------------------*/ 
 | |
|  
 | |
| void lsf2a(  
 | |
|     float *a_coef,  /* (o) lpc coefficients */ 
 | |
|     float *freq     /* (i) lsf coefficients */ 
 | |
| ){ 
 | |
|     int i, j; 
 | |
|     float hlp; 
 | |
|     float p[LPC_HALFORDER], q[LPC_HALFORDER]; 
 | |
|     float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER], a2[LPC_HALFORDER]; 
 | |
|     float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER], b2[LPC_HALFORDER]; 
 | |
|  
 | |
|     for (i = 0; i < LPC_FILTERORDER; i++) { 
 | |
|         freq[i] = freq[i] * PI2; 
 | |
|     } 
 | |
|  
 | |
|     /* Check input for ill-conditioned cases.  This part is not  
 | |
|     found in the TIA standard.  It involves the following 2 IF  
 | |
|     blocks. If "freq" is judged ill-conditioned, then we first  
 | |
|     modify freq[0] and freq[LPC_HALFORDER-1] (normally  
 | |
|     LPC_HALFORDER = 10 for LPC applications), then we adjust  
 | |
|     the other "freq" values slightly */ 
 | |
|  
 | |
|      
 | |
|     if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)){ 
 | |
|  
 | |
|          
 | |
|         if (freq[0] <= 0.0) { 
 | |
|             freq[0] = (float)0.022; 
 | |
|         } 
 | |
|  
 | |
|          
 | |
|         if (freq[LPC_FILTERORDER - 1] >= 0.5) { 
 | |
|             freq[LPC_FILTERORDER - 1] = (float)0.499; 
 | |
|         } 
 | |
|  
 | |
|         hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) /  
 | |
|             (float) (LPC_FILTERORDER - 1); 
 | |
|  
 | |
|         for (i = 1; i < LPC_FILTERORDER; i++) { 
 | |
|             freq[i] = freq[i - 1] + hlp; 
 | |
|         } 
 | |
|     } 
 | |
|      
 | |
|     memset(a1, 0, LPC_HALFORDER*sizeof(float)); 
 | |
|     memset(a2, 0, LPC_HALFORDER*sizeof(float)); 
 | |
|     memset(b1, 0, LPC_HALFORDER*sizeof(float)); 
 | |
|     memset(b2, 0, LPC_HALFORDER*sizeof(float)); 
 | |
|     memset(a, 0, (LPC_HALFORDER+1)*sizeof(float)); 
 | |
|     memset(b, 0, (LPC_HALFORDER+1)*sizeof(float)); 
 | |
|          
 | |
|     /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and  
 | |
|     cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2.   
 | |
|     Note that for this code p[i] specifies the coefficients  
 | |
|     used in .Q_A(z) while q[i] specifies the coefficients used  
 | |
|     in .P_A(z) */ 
 | |
|  
 | |
|     for (i = 0; i < LPC_HALFORDER; i++){ 
 | |
|         p[i] = (float)cos(TWO_PI * freq[2 * i]); 
 | |
|         q[i] = (float)cos(TWO_PI * freq[2 * i + 1]); 
 | |
|     } 
 | |
|      
 | |
|     a[0] = 0.25; 
 | |
|     b[0] = 0.25; 
 | |
|      
 | |
|     for (i = 0; i < LPC_HALFORDER; i++){ 
 | |
|         a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i]; 
 | |
|         b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i]; 
 | |
|         a2[i] = a1[i]; 
 | |
|         a1[i] = a[i]; 
 | |
|         b2[i] = b1[i]; 
 | |
|         b1[i] = b[i]; 
 | |
|     } 
 | |
|      
 | |
|     for (j = 0; j < LPC_FILTERORDER; j++){ 
 | |
|          
 | |
|         if (j == 0) { 
 | |
|             a[0] = 0.25; 
 | |
|             b[0] = -0.25; 
 | |
|         } else { 
 | |
|             a[0] = b[0] = 0.0; 
 | |
|         } 
 | |
|          
 | |
|         for (i = 0; i < LPC_HALFORDER; i++){ 
 | |
|             a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i]; 
 | |
|             b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i]; 
 | |
|             a2[i] = a1[i]; 
 | |
|             a1[i] = a[i]; 
 | |
|             b2[i] = b1[i]; 
 | |
|             b1[i] = b[i]; 
 | |
|         } 
 | |
|  
 | |
|         a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]); 
 | |
|     } 
 | |
|  
 | |
|     a_coef[0] = 1.0; 
 | |
| } 
 | |
|  
 | |
|  
 |