mirror of
https://github.com/asterisk/asterisk.git
synced 2025-09-04 03:50:31 +00:00
Remove as much trailing whitespace as possible.
Change-Id: I873c1c6d00f447269bd841494459efccdd2c19c0
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
/* Copyright (C) 2007-2008 Jean-Marc Valin
|
||||
Copyright (C) 2008 Thorvald Natvig
|
||||
|
||||
|
||||
File: resample.c
|
||||
Arbitrary resampling code
|
||||
|
||||
@@ -38,22 +38,22 @@
|
||||
- Low memory requirement
|
||||
- Good *perceptual* quality (and not best SNR)
|
||||
|
||||
Warning: This resampler is relatively new. Although I think I got rid of
|
||||
Warning: This resampler is relatively new. Although I think I got rid of
|
||||
all the major bugs and I don't expect the API to change anymore, there
|
||||
may be something I've missed. So use with caution.
|
||||
|
||||
This algorithm is based on this original resampling algorithm:
|
||||
Smith, Julius O. Digital Audio Resampling Home Page
|
||||
Center for Computer Research in Music and Acoustics (CCRMA),
|
||||
Center for Computer Research in Music and Acoustics (CCRMA),
|
||||
Stanford University, 2007.
|
||||
Web published at http://www-ccrma.stanford.edu/~jos/resample/.
|
||||
|
||||
There is one main difference, though. This resampler uses cubic
|
||||
There is one main difference, though. This resampler uses cubic
|
||||
interpolation instead of linear interpolation in the above paper. This
|
||||
makes the table much smaller and makes it possible to compute that table
|
||||
on a per-stream basis. In turn, being able to tweak the table for each
|
||||
stream makes it possible to both reduce complexity on simple ratios
|
||||
(e.g. 2/3), and get rid of the rounding operations in the inner loop.
|
||||
on a per-stream basis. In turn, being able to tweak the table for each
|
||||
stream makes it possible to both reduce complexity on simple ratios
|
||||
(e.g. 2/3), and get rid of the rounding operations in the inner loop.
|
||||
The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
|
||||
*/
|
||||
|
||||
@@ -106,7 +106,7 @@ struct SpeexResamplerState_ {
|
||||
spx_uint32_t out_rate;
|
||||
spx_uint32_t num_rate;
|
||||
spx_uint32_t den_rate;
|
||||
|
||||
|
||||
int quality;
|
||||
spx_uint32_t nb_channels;
|
||||
spx_uint32_t filt_len;
|
||||
@@ -118,17 +118,17 @@ struct SpeexResamplerState_ {
|
||||
spx_uint32_t oversample;
|
||||
int initialised;
|
||||
int started;
|
||||
|
||||
|
||||
/* These are per-channel */
|
||||
spx_int32_t *last_sample;
|
||||
spx_uint32_t *samp_frac_num;
|
||||
spx_uint32_t *magic_samples;
|
||||
|
||||
|
||||
spx_word16_t *mem;
|
||||
spx_word16_t *sinc_table;
|
||||
spx_uint32_t sinc_table_length;
|
||||
resampler_basic_func resampler_ptr;
|
||||
|
||||
|
||||
int in_stride;
|
||||
int out_stride;
|
||||
} ;
|
||||
@@ -170,7 +170,7 @@ static double kaiser8_table[36] = {
|
||||
0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
|
||||
0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
|
||||
0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000};
|
||||
|
||||
|
||||
static double kaiser6_table[36] = {
|
||||
0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
|
||||
0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
|
||||
@@ -183,7 +183,7 @@ struct FuncDef {
|
||||
double *table;
|
||||
int oversample;
|
||||
};
|
||||
|
||||
|
||||
static struct FuncDef _KAISER12 = {kaiser12_table, 64};
|
||||
#define KAISER12 (&_KAISER12)
|
||||
/*static struct FuncDef _KAISER12 = {kaiser12_table, 32};
|
||||
@@ -205,7 +205,7 @@ struct QualityMapping {
|
||||
|
||||
|
||||
/* This table maps conversion quality to internal parameters. There are two
|
||||
reasons that explain why the up-sampling bandwidth is larger than the
|
||||
reasons that explain why the up-sampling bandwidth is larger than the
|
||||
down-sampling bandwidth:
|
||||
1) When up-sampling, we can assume that the spectrum is already attenuated
|
||||
close to the Nyquist rate (from an A/D or a previous resampling filter)
|
||||
@@ -231,7 +231,7 @@ static double compute_func(float x, struct FuncDef *func)
|
||||
{
|
||||
float y, frac;
|
||||
double interp[4];
|
||||
int ind;
|
||||
int ind;
|
||||
y = x*func->oversample;
|
||||
ind = (int)floor(y);
|
||||
frac = (y-ind);
|
||||
@@ -242,7 +242,7 @@ static double compute_func(float x, struct FuncDef *func)
|
||||
interp[0] = -0.3333333333*frac + 0.5*(frac*frac) - 0.1666666667*(frac*frac*frac);
|
||||
/* Just to make sure we don't have rounding problems */
|
||||
interp[1] = 1.f-interp[3]-interp[2]-interp[0];
|
||||
|
||||
|
||||
/*sum = frac*accum[1] + (1-frac)*accum[2];*/
|
||||
return interp[0]*func->table[ind] + interp[1]*func->table[ind+1] + interp[2]*func->table[ind+2] + interp[3]*func->table[ind+3];
|
||||
}
|
||||
@@ -461,7 +461,7 @@ static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint3
|
||||
cubic_coef(frac, interp);
|
||||
sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
|
||||
#endif
|
||||
|
||||
|
||||
out[out_stride * out_sample++] = PSHR32(sum,15);
|
||||
last_sample += int_advance;
|
||||
samp_frac_num += frac_advance;
|
||||
@@ -523,7 +523,7 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
|
||||
cubic_coef(frac, interp);
|
||||
sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
|
||||
#endif
|
||||
|
||||
|
||||
out[out_stride * out_sample++] = PSHR32(sum,15);
|
||||
last_sample += int_advance;
|
||||
samp_frac_num += frac_advance;
|
||||
@@ -543,11 +543,11 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
|
||||
static void update_filter(SpeexResamplerState *st)
|
||||
{
|
||||
spx_uint32_t old_length;
|
||||
|
||||
|
||||
old_length = st->filt_len;
|
||||
st->oversample = quality_map[st->quality].oversample;
|
||||
st->filt_len = quality_map[st->quality].base_length;
|
||||
|
||||
|
||||
if (st->num_rate > st->den_rate)
|
||||
{
|
||||
/* down-sampling */
|
||||
@@ -570,7 +570,7 @@ static void update_filter(SpeexResamplerState *st)
|
||||
/* up-sampling */
|
||||
st->cutoff = quality_map[st->quality].upsample_bandwidth;
|
||||
}
|
||||
|
||||
|
||||
/* Choose the resampling type that requires the least amount of memory */
|
||||
if (st->den_rate <= st->oversample)
|
||||
{
|
||||
@@ -623,7 +623,7 @@ static void update_filter(SpeexResamplerState *st)
|
||||
st->int_advance = st->num_rate/st->den_rate;
|
||||
st->frac_advance = st->num_rate%st->den_rate;
|
||||
|
||||
|
||||
|
||||
/* Here's the place where we update the filter memory to take into account
|
||||
the change in filter length. It's probably the messiest part of the code
|
||||
due to handling of lots of corner cases. */
|
||||
@@ -661,7 +661,7 @@ static void update_filter(SpeexResamplerState *st)
|
||||
/*if (st->magic_samples[i])*/
|
||||
{
|
||||
/* Try and remove the magic samples as if nothing had happened */
|
||||
|
||||
|
||||
/* FIXME: This is wrong but for now we need it to avoid going over the array bounds */
|
||||
olen = old_length + 2*st->magic_samples[i];
|
||||
for (j=old_length-2+st->magic_samples[i];j>=0;j--)
|
||||
@@ -736,18 +736,18 @@ static void update_filter(SpeexResamplerState *st)
|
||||
st->filt_len = 0;
|
||||
st->mem = 0;
|
||||
st->resampler_ptr = 0;
|
||||
|
||||
|
||||
st->cutoff = 1.f;
|
||||
st->nb_channels = nb_channels;
|
||||
st->in_stride = 1;
|
||||
st->out_stride = 1;
|
||||
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
st->buffer_size = 160;
|
||||
#else
|
||||
st->buffer_size = 160;
|
||||
#endif
|
||||
|
||||
|
||||
/* Per channel data */
|
||||
st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(int));
|
||||
st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(int));
|
||||
@@ -762,9 +762,9 @@ static void update_filter(SpeexResamplerState *st)
|
||||
speex_resampler_set_quality(st, quality);
|
||||
speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_rate);
|
||||
|
||||
|
||||
|
||||
update_filter(st);
|
||||
|
||||
|
||||
st->initialised = 1;
|
||||
if (err)
|
||||
*err = RESAMPLER_ERR_SUCCESS;
|
||||
@@ -789,17 +789,17 @@ static int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t
|
||||
int out_sample = 0;
|
||||
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
|
||||
spx_uint32_t ilen;
|
||||
|
||||
|
||||
st->started = 1;
|
||||
|
||||
|
||||
/* Call the right resampler through the function ptr */
|
||||
out_sample = st->resampler_ptr(st, channel_index, mem, in_len, out, out_len);
|
||||
|
||||
|
||||
if (st->last_sample[channel_index] < (spx_int32_t)*in_len)
|
||||
*in_len = st->last_sample[channel_index];
|
||||
*out_len = out_sample;
|
||||
st->last_sample[channel_index] -= *in_len;
|
||||
|
||||
|
||||
ilen = *in_len;
|
||||
|
||||
for(j=0;j<N-1;++j)
|
||||
@@ -812,11 +812,11 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
||||
spx_uint32_t tmp_in_len = st->magic_samples[channel_index];
|
||||
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
|
||||
const int N = st->filt_len;
|
||||
|
||||
|
||||
speex_resampler_process_native(st, channel_index, &tmp_in_len, *out, &out_len);
|
||||
|
||||
st->magic_samples[channel_index] -= tmp_in_len;
|
||||
|
||||
|
||||
/* If we couldn't process all "magic" input samples, save the rest for next time */
|
||||
if (st->magic_samples[channel_index])
|
||||
{
|
||||
@@ -842,13 +842,13 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
||||
const spx_uint32_t xlen = st->mem_alloc_size - filt_offs;
|
||||
const int istride = st->in_stride;
|
||||
|
||||
if (st->magic_samples[channel_index])
|
||||
if (st->magic_samples[channel_index])
|
||||
olen -= speex_resampler_magic(st, channel_index, &out, olen);
|
||||
if (! st->magic_samples[channel_index]) {
|
||||
while (ilen && olen) {
|
||||
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
|
||||
spx_uint32_t ochunk = olen;
|
||||
|
||||
|
||||
if (in) {
|
||||
for(j=0;j<ichunk;++j)
|
||||
x[j+filt_offs]=in[j*istride];
|
||||
@@ -892,7 +892,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
||||
#endif
|
||||
|
||||
st->out_stride = 1;
|
||||
|
||||
|
||||
while (ilen && olen) {
|
||||
spx_word16_t *y = ystack;
|
||||
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
|
||||
@@ -929,7 +929,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
||||
#else
|
||||
out[j*ostride_save] = WORD2INT(ystack[j]);
|
||||
#endif
|
||||
|
||||
|
||||
ilen -= ichunk;
|
||||
olen -= ochunk;
|
||||
out += (ochunk+omagic) * ostride_save;
|
||||
@@ -963,7 +963,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
||||
st->out_stride = ostride_save;
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
|
||||
{
|
||||
spx_uint32_t i;
|
||||
@@ -1003,7 +1003,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
||||
spx_uint32_t i;
|
||||
if (st->in_rate == in_rate && st->out_rate == out_rate && st->num_rate == ratio_num && st->den_rate == ratio_den)
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
|
||||
|
||||
old_den = st->den_rate;
|
||||
st->in_rate = in_rate;
|
||||
st->out_rate = out_rate;
|
||||
@@ -1018,7 +1018,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
||||
st->den_rate /= fact;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (old_den > 0)
|
||||
{
|
||||
for (i=0;i<st->nb_channels;i++)
|
||||
@@ -1029,7 +1029,7 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
||||
st->samp_frac_num[i] = st->den_rate-1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (st->initialised)
|
||||
update_filter(st);
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
|
Reference in New Issue
Block a user