mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-10-31 10:47:18 +00:00 
			
		
		
		
	Add iLBC codec
git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@852 65c4cc65-6c06-0410-ace0-fbb531ad65f3
This commit is contained in:
		
							
								
								
									
										252
									
								
								codecs/ilbc/lsf.c
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										252
									
								
								codecs/ilbc/lsf.c
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,252 @@ | ||||
|   | ||||
| /******************************************************************  | ||||
|   | ||||
|     iLBC Speech Coder ANSI-C Source Code  | ||||
|   | ||||
|     lsf.c   | ||||
|   | ||||
|     Copyright (c) 2001,  | ||||
|     Global IP Sound AB.  | ||||
|     All rights reserved.  | ||||
|   | ||||
| ******************************************************************/  | ||||
|   | ||||
| #include <string.h>  | ||||
| #include <math.h>  | ||||
|   | ||||
| #include "iLBC_define.h"  | ||||
|   | ||||
| /*----------------------------------------------------------------*  | ||||
|  *  conversion from lpc coefficients to lsf coefficients   | ||||
|  *---------------------------------------------------------------*/  | ||||
|   | ||||
| void a2lsf(   | ||||
|     float *freq,/* (o) lsf coefficients */  | ||||
|     float *a    /* (i) lpc coefficients */  | ||||
| ){  | ||||
|     float steps[LSF_NUMBER_OF_STEPS] =   | ||||
|         {(float)0.00635, (float)0.003175, (float)0.0015875,   | ||||
|         (float)0.00079375};  | ||||
|     float step;  | ||||
|     int step_idx;  | ||||
|     int lsp_index;    | ||||
|     float p[LPC_HALFORDER];  | ||||
|     float q[LPC_HALFORDER];  | ||||
|     float p_pre[LPC_HALFORDER];  | ||||
|     float q_pre[LPC_HALFORDER];  | ||||
|     float old_p, old_q, *old;  | ||||
|     float *pq_coef;   | ||||
|     float omega, old_omega;  | ||||
|     int i;  | ||||
|     float hlp, hlp1, hlp2, hlp3, hlp4, hlp5;  | ||||
|   | ||||
|     for (i = 0; i < LPC_HALFORDER; i++){  | ||||
|         p[i] = (float)-1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]);  | ||||
|         q[i] = a[LPC_FILTERORDER - i] - a[i + 1];  | ||||
|     }  | ||||
|       | ||||
|     p_pre[0] = (float)-1.0 - p[0];  | ||||
|     p_pre[1] = - p_pre[0] - p[1];  | ||||
|     p_pre[2] = - p_pre[1] - p[2];  | ||||
|     p_pre[3] = - p_pre[2] - p[3];  | ||||
|     p_pre[4] = - p_pre[3] - p[4];  | ||||
|     p_pre[4] = p_pre[4] / 2;  | ||||
|       | ||||
|     q_pre[0] = (float)1.0 - q[0];  | ||||
|     q_pre[1] = q_pre[0] - q[1];  | ||||
|     q_pre[2] = q_pre[1] - q[2];  | ||||
|     q_pre[3] = q_pre[2] - q[3];  | ||||
|     q_pre[4] = q_pre[3] - q[4];  | ||||
|     q_pre[4] = q_pre[4] / 2;  | ||||
|       | ||||
|     omega = 0.0;  | ||||
|     old_omega = 0.0;  | ||||
|   | ||||
|     old_p = FLOAT_MAX;  | ||||
|     old_q = FLOAT_MAX;  | ||||
|       | ||||
|     /* Here we loop through lsp_index to find all the   | ||||
|        LPC_FILTERORDER roots for omega. */    | ||||
|   | ||||
|     for (lsp_index = 0; lsp_index < LPC_FILTERORDER; lsp_index++){  | ||||
|           | ||||
|         /* Depending on lsp_index being even or odd, we   | ||||
|         alternatively solve the roots for the two LSP equations. */  | ||||
|   | ||||
|           | ||||
|         if ((lsp_index & 0x1) == 0) {  | ||||
|             pq_coef = p_pre;  | ||||
|             old = &old_p;  | ||||
|         } else {  | ||||
|             pq_coef = q_pre;  | ||||
|             old = &old_q;  | ||||
|         }  | ||||
|           | ||||
|         /* Start with low resolution grid */  | ||||
|   | ||||
|         for (step_idx = 0, step = steps[step_idx];   | ||||
|             step_idx < LSF_NUMBER_OF_STEPS;){  | ||||
|               | ||||
|             /*  cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) +   | ||||
|             pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */  | ||||
|   | ||||
|             hlp = (float)cos(omega * TWO_PI);  | ||||
|             hlp1 = (float)2.0 * hlp + pq_coef[0];  | ||||
|             hlp2 = (float)2.0 * hlp * hlp1 - (float)1.0 +   | ||||
|                 pq_coef[1];  | ||||
|             hlp3 = (float)2.0 * hlp * hlp2 - hlp1 + pq_coef[2];  | ||||
|             hlp4 = (float)2.0 * hlp * hlp3 - hlp2 + pq_coef[3];  | ||||
|             hlp5 = hlp * hlp4 - hlp3 + pq_coef[4];  | ||||
|               | ||||
|               | ||||
|             if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)){  | ||||
|                   | ||||
|                 if (step_idx == (LSF_NUMBER_OF_STEPS - 1)){  | ||||
|                       | ||||
|                     if (fabs(hlp5) >= fabs(*old)) {  | ||||
|                         freq[lsp_index] = omega - step;  | ||||
|                     } else {  | ||||
|                         freq[lsp_index] = omega;  | ||||
|                     }     | ||||
|                       | ||||
|                       | ||||
|                     if ((*old) >= 0.0){  | ||||
|                         *old = (float)-1.0 * FLOAT_MAX;  | ||||
|                     } else {  | ||||
|                         *old = FLOAT_MAX;  | ||||
|                     }  | ||||
|   | ||||
|                     omega = old_omega;  | ||||
|                     step_idx = 0;  | ||||
|                       | ||||
|                     step_idx = LSF_NUMBER_OF_STEPS;  | ||||
|                 } else {  | ||||
|                       | ||||
|                     if (step_idx == 0) {  | ||||
|                         old_omega = omega;  | ||||
|                     }  | ||||
|   | ||||
|                     step_idx++;  | ||||
|                     omega -= steps[step_idx];  | ||||
|   | ||||
|                     /* Go back one grid step */  | ||||
|   | ||||
|                     step = steps[step_idx];  | ||||
|                 }  | ||||
|             } else {  | ||||
|                   | ||||
|             /* increment omega until they are of different sign,   | ||||
|             and we know there is at least one root between omega   | ||||
|             and old_omega */  | ||||
|                 *old = hlp5;  | ||||
|                 omega += step;  | ||||
|             }  | ||||
|         }  | ||||
|     }  | ||||
|   | ||||
|     for (i = 0; i < LPC_FILTERORDER; i++) {  | ||||
|         freq[i] = freq[i] * TWO_PI;  | ||||
|     }  | ||||
| }  | ||||
|   | ||||
| /*----------------------------------------------------------------*  | ||||
|  *  conversion from lsf coefficients to lpc coefficients   | ||||
|  *---------------------------------------------------------------*/  | ||||
|   | ||||
| void lsf2a(   | ||||
|     float *a_coef,  /* (o) lpc coefficients */  | ||||
|     float *freq     /* (i) lsf coefficients */  | ||||
| ){  | ||||
|     int i, j;  | ||||
|     float hlp;  | ||||
|     float p[LPC_HALFORDER], q[LPC_HALFORDER];  | ||||
|     float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER], a2[LPC_HALFORDER];  | ||||
|     float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER], b2[LPC_HALFORDER];  | ||||
|   | ||||
|     for (i = 0; i < LPC_FILTERORDER; i++) {  | ||||
|         freq[i] = freq[i] * PI2;  | ||||
|     }  | ||||
|   | ||||
|     /* Check input for ill-conditioned cases.  This part is not   | ||||
|     found in the TIA standard.  It involves the following 2 IF   | ||||
|     blocks. If "freq" is judged ill-conditioned, then we first   | ||||
|     modify freq[0] and freq[LPC_HALFORDER-1] (normally   | ||||
|     LPC_HALFORDER = 10 for LPC applications), then we adjust   | ||||
|     the other "freq" values slightly */  | ||||
|   | ||||
|       | ||||
|     if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)){  | ||||
|   | ||||
|           | ||||
|         if (freq[0] <= 0.0) {  | ||||
|             freq[0] = (float)0.022;  | ||||
|         }  | ||||
|   | ||||
|           | ||||
|         if (freq[LPC_FILTERORDER - 1] >= 0.5) {  | ||||
|             freq[LPC_FILTERORDER - 1] = (float)0.499;  | ||||
|         }  | ||||
|   | ||||
|         hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) /   | ||||
|             (float) (LPC_FILTERORDER - 1);  | ||||
|   | ||||
|         for (i = 1; i < LPC_FILTERORDER; i++) {  | ||||
|             freq[i] = freq[i - 1] + hlp;  | ||||
|         }  | ||||
|     }  | ||||
|       | ||||
|     memset(a1, 0, LPC_HALFORDER*sizeof(float));  | ||||
|     memset(a2, 0, LPC_HALFORDER*sizeof(float));  | ||||
|     memset(b1, 0, LPC_HALFORDER*sizeof(float));  | ||||
|     memset(b2, 0, LPC_HALFORDER*sizeof(float));  | ||||
|     memset(a, 0, (LPC_HALFORDER+1)*sizeof(float));  | ||||
|     memset(b, 0, (LPC_HALFORDER+1)*sizeof(float));  | ||||
|           | ||||
|     /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and   | ||||
|     cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2.    | ||||
|     Note that for this code p[i] specifies the coefficients   | ||||
|     used in .Q_A(z) while q[i] specifies the coefficients used   | ||||
|     in .P_A(z) */  | ||||
|   | ||||
|     for (i = 0; i < LPC_HALFORDER; i++){  | ||||
|         p[i] = (float)cos(TWO_PI * freq[2 * i]);  | ||||
|         q[i] = (float)cos(TWO_PI * freq[2 * i + 1]);  | ||||
|     }  | ||||
|       | ||||
|     a[0] = 0.25;  | ||||
|     b[0] = 0.25;  | ||||
|       | ||||
|     for (i = 0; i < LPC_HALFORDER; i++){  | ||||
|         a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];  | ||||
|         b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];  | ||||
|         a2[i] = a1[i];  | ||||
|         a1[i] = a[i];  | ||||
|         b2[i] = b1[i];  | ||||
|         b1[i] = b[i];  | ||||
|     }  | ||||
|       | ||||
|     for (j = 0; j < LPC_FILTERORDER; j++){  | ||||
|           | ||||
|         if (j == 0) {  | ||||
|             a[0] = 0.25;  | ||||
|             b[0] = -0.25;  | ||||
|         } else {  | ||||
|             a[0] = b[0] = 0.0;  | ||||
|         }  | ||||
|           | ||||
|         for (i = 0; i < LPC_HALFORDER; i++){  | ||||
|             a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];  | ||||
|             b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];  | ||||
|             a2[i] = a1[i];  | ||||
|             a1[i] = a[i];  | ||||
|             b2[i] = b1[i];  | ||||
|             b1[i] = b[i];  | ||||
|         }  | ||||
|   | ||||
|         a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]);  | ||||
|     }  | ||||
|   | ||||
|     a_coef[0] = 1.0;  | ||||
| }  | ||||
|   | ||||
|   | ||||
		Reference in New Issue
	
	Block a user