mirror of
				https://github.com/asterisk/asterisk.git
				synced 2025-10-31 02:37:10 +00:00 
			
		
		
		
	merge new_loader_completion branch, including (at least):
- restructured build tree and makefiles to eliminate recursion problems - support for embedded modules - support for static builds - simpler cross-compilation support - simpler module/loader interface (no exported symbols) git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@40722 65c4cc65-6c06-0410-ace0-fbb531ad65f3
This commit is contained in:
		
							
								
								
									
										317
									
								
								main/aescrypt.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										317
									
								
								main/aescrypt.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,317 @@ | ||||
| /* | ||||
|  --------------------------------------------------------------------------- | ||||
|  Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | ||||
|  All rights reserved. | ||||
|  | ||||
|  LICENSE TERMS | ||||
|  | ||||
|  The free distribution and use of this software in both source and binary | ||||
|  form is allowed (with or without changes) provided that: | ||||
|  | ||||
|    1. distributions of this source code include the above copyright | ||||
|       notice, this list of conditions and the following disclaimer; | ||||
|  | ||||
|    2. distributions in binary form include the above copyright | ||||
|       notice, this list of conditions and the following disclaimer | ||||
|       in the documentation and/or other associated materials; | ||||
|  | ||||
|    3. the copyright holder's name is not used to endorse products | ||||
|       built using this software without specific written permission. | ||||
|  | ||||
|  ALTERNATIVELY, provided that this notice is retained in full, this product | ||||
|  may be distributed under the terms of the GNU General Public License (GPL), | ||||
|  in which case the provisions of the GPL apply INSTEAD OF those given above. | ||||
|  | ||||
|  DISCLAIMER | ||||
|  | ||||
|  This software is provided 'as is' with no explicit or implied warranties | ||||
|  in respect of its properties, including, but not limited to, correctness | ||||
|  and/or fitness for purpose. | ||||
|  --------------------------------------------------------------------------- | ||||
|  Issue Date: 26/08/2003 | ||||
|  | ||||
| */ | ||||
|  | ||||
| /*! \file | ||||
|  * | ||||
|  * \brief  This file contains the code for implementing encryption and decryption | ||||
|  * for AES (Rijndael) for block and key sizes of 16, 24 and 32 bytes. It | ||||
|  * can optionally be replaced by code written in assembler using NASM. For | ||||
|  * further details see the file aesopt.h | ||||
|  * | ||||
|  * \author Dr Brian Gladman <brg@gladman.me.uk> | ||||
|  */ | ||||
|  | ||||
| #include "aesopt.h" | ||||
|  | ||||
| #if defined(__cplusplus) | ||||
| extern "C" | ||||
| { | ||||
| #endif | ||||
|  | ||||
| #define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c]) | ||||
| #define so(y,x,c)   word_out(y, c, s(x,c)) | ||||
|  | ||||
| #if defined(ARRAYS) | ||||
| #define locals(y,x)     x[4],y[4] | ||||
| #else | ||||
| #define locals(y,x)     x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3 | ||||
| #endif | ||||
|  | ||||
| #define l_copy(y, x)    s(y,0) = s(x,0); s(y,1) = s(x,1); \ | ||||
|                         s(y,2) = s(x,2); s(y,3) = s(x,3); | ||||
| #define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3) | ||||
| #define state_out(y,x)  so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3) | ||||
| #define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3) | ||||
|  | ||||
| #if defined(ENCRYPTION) && !defined(AES_ASM) | ||||
|  | ||||
| /* Visual C++ .Net v7.1 provides the fastest encryption code when using | ||||
|    Pentium optimiation with small code but this is poor for decryption | ||||
|    so we need to control this with the following VC++ pragmas | ||||
| */ | ||||
|  | ||||
| #if defined(_MSC_VER) | ||||
| #pragma optimize( "s", on ) | ||||
| #endif | ||||
|  | ||||
| /* Given the column (c) of the output state variable, the following | ||||
|    macros give the input state variables which are needed in its | ||||
|    computation for each row (r) of the state. All the alternative | ||||
|    macros give the same end values but expand into different ways | ||||
|    of calculating these values.  In particular the complex macro | ||||
|    used for dynamically variable block sizes is designed to expand | ||||
|    to a compile time constant whenever possible but will expand to | ||||
|    conditional clauses on some branches (I am grateful to Frank | ||||
|    Yellin for this construction) | ||||
| */ | ||||
|  | ||||
| #define fwd_var(x,r,c)\ | ||||
|  ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\ | ||||
|  : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\ | ||||
|  : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\ | ||||
|  :          ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))) | ||||
|  | ||||
| #if defined(FT4_SET) | ||||
| #undef  dec_fmvars | ||||
| #define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c)) | ||||
| #elif defined(FT1_SET) | ||||
| #undef  dec_fmvars | ||||
| #define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c)) | ||||
| #else | ||||
| #define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c))) | ||||
| #endif | ||||
|  | ||||
| #if defined(FL4_SET) | ||||
| #define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c)) | ||||
| #elif defined(FL1_SET) | ||||
| #define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c)) | ||||
| #else | ||||
| #define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c)) | ||||
| #endif | ||||
|  | ||||
| aes_rval aes_encrypt(const void *in_blk, void *out_blk, const aes_encrypt_ctx cx[1]) | ||||
| {   aes_32t         locals(b0, b1); | ||||
|     const aes_32t   *kp = cx->ks; | ||||
| #ifdef dec_fmvars | ||||
|     dec_fmvars; /* declare variables for fwd_mcol() if needed */ | ||||
| #endif | ||||
|  | ||||
|     aes_32t nr = (kp[45] ^ kp[52] ^ kp[53] ? kp[52] : 14); | ||||
|  | ||||
| #ifdef AES_ERR_CHK | ||||
|     if(   (nr != 10 || !(kp[0] | kp[3] | kp[4]))  | ||||
|        && (nr != 12 || !(kp[0] | kp[5] | kp[6])) | ||||
|        && (nr != 14 || !(kp[0] | kp[7] | kp[8])) ) | ||||
|         return aes_error; | ||||
| #endif | ||||
|  | ||||
|     state_in(b0, in_blk, kp); | ||||
|  | ||||
| #if (ENC_UNROLL == FULL) | ||||
|  | ||||
|     switch(nr) | ||||
|     { | ||||
|     case 14: | ||||
|         round(fwd_rnd,  b1, b0, kp + 1 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 2 * N_COLS); | ||||
|         kp += 2 * N_COLS; | ||||
|     case 12: | ||||
|         round(fwd_rnd,  b1, b0, kp + 1 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 2 * N_COLS); | ||||
|         kp += 2 * N_COLS; | ||||
|     case 10: | ||||
|         round(fwd_rnd,  b1, b0, kp + 1 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 2 * N_COLS); | ||||
|         round(fwd_rnd,  b1, b0, kp + 3 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 4 * N_COLS); | ||||
|         round(fwd_rnd,  b1, b0, kp + 5 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 6 * N_COLS); | ||||
|         round(fwd_rnd,  b1, b0, kp + 7 * N_COLS); | ||||
|         round(fwd_rnd,  b0, b1, kp + 8 * N_COLS); | ||||
|         round(fwd_rnd,  b1, b0, kp + 9 * N_COLS); | ||||
|         round(fwd_lrnd, b0, b1, kp +10 * N_COLS); | ||||
|     } | ||||
|  | ||||
| #else | ||||
|  | ||||
| #if (ENC_UNROLL == PARTIAL) | ||||
|     {   aes_32t    rnd; | ||||
|         for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd) | ||||
|         { | ||||
|             kp += N_COLS; | ||||
|             round(fwd_rnd, b1, b0, kp); | ||||
|             kp += N_COLS; | ||||
|             round(fwd_rnd, b0, b1, kp); | ||||
|         } | ||||
|         kp += N_COLS; | ||||
|         round(fwd_rnd,  b1, b0, kp); | ||||
| #else | ||||
|     {   aes_32t    rnd; | ||||
|         for(rnd = 0; rnd < nr - 1; ++rnd) | ||||
|         { | ||||
|             kp += N_COLS; | ||||
|             round(fwd_rnd, b1, b0, kp); | ||||
|             l_copy(b0, b1); | ||||
|         } | ||||
| #endif | ||||
|         kp += N_COLS; | ||||
|         round(fwd_lrnd, b0, b1, kp); | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     state_out(out_blk, b0); | ||||
| #ifdef AES_ERR_CHK | ||||
|     return aes_good; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(DECRYPTION) && !defined(AES_ASM) | ||||
|  | ||||
| /* Visual C++ .Net v7.1 provides the fastest encryption code when using | ||||
|    Pentium optimiation with small code but this is poor for decryption | ||||
|    so we need to control this with the following VC++ pragmas | ||||
| */ | ||||
|  | ||||
| #if defined(_MSC_VER) | ||||
| #pragma optimize( "t", on ) | ||||
| #endif | ||||
|  | ||||
| /* Given the column (c) of the output state variable, the following | ||||
|    macros give the input state variables which are needed in its | ||||
|    computation for each row (r) of the state. All the alternative | ||||
|    macros give the same end values but expand into different ways | ||||
|    of calculating these values.  In particular the complex macro | ||||
|    used for dynamically variable block sizes is designed to expand | ||||
|    to a compile time constant whenever possible but will expand to | ||||
|    conditional clauses on some branches (I am grateful to Frank | ||||
|    Yellin for this construction) | ||||
| */ | ||||
|  | ||||
| #define inv_var(x,r,c)\ | ||||
|  ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\ | ||||
|  : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\ | ||||
|  : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\ | ||||
|  :          ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))) | ||||
|  | ||||
| #if defined(IT4_SET) | ||||
| #undef  dec_imvars | ||||
| #define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c)) | ||||
| #elif defined(IT1_SET) | ||||
| #undef  dec_imvars | ||||
| #define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c)) | ||||
| #else | ||||
| #define inv_rnd(y,x,k,c)    (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))) | ||||
| #endif | ||||
|  | ||||
| #if defined(IL4_SET) | ||||
| #define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c)) | ||||
| #elif defined(IL1_SET) | ||||
| #define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c)) | ||||
| #else | ||||
| #define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)) | ||||
| #endif | ||||
|  | ||||
| aes_rval aes_decrypt(const void *in_blk, void *out_blk, const aes_decrypt_ctx cx[1]) | ||||
| {   aes_32t        locals(b0, b1); | ||||
| #ifdef dec_imvars | ||||
|     dec_imvars; /* declare variables for inv_mcol() if needed */ | ||||
| #endif | ||||
|  | ||||
|     aes_32t nr = (cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] ? cx->ks[52] : 14); | ||||
|     const aes_32t *kp = cx->ks + nr * N_COLS; | ||||
|  | ||||
| #ifdef AES_ERR_CHK | ||||
|     if(   (nr != 10 || !(cx->ks[0] | cx->ks[3] | cx->ks[4]))  | ||||
|        && (nr != 12 || !(cx->ks[0] | cx->ks[5] | cx->ks[6])) | ||||
|        && (nr != 14 || !(cx->ks[0] | cx->ks[7] | cx->ks[8])) ) | ||||
|         return aes_error; | ||||
| #endif | ||||
|  | ||||
|     state_in(b0, in_blk, kp); | ||||
|  | ||||
| #if (DEC_UNROLL == FULL) | ||||
|  | ||||
|     switch(nr) | ||||
|     { | ||||
|     case 14: | ||||
|         round(inv_rnd,  b1, b0, kp -  1 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  2 * N_COLS); | ||||
|         kp -= 2 * N_COLS; | ||||
|     case 12: | ||||
|         round(inv_rnd,  b1, b0, kp -  1 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  2 * N_COLS); | ||||
|         kp -= 2 * N_COLS; | ||||
|     case 10: | ||||
|         round(inv_rnd,  b1, b0, kp -  1 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  2 * N_COLS); | ||||
|         round(inv_rnd,  b1, b0, kp -  3 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  4 * N_COLS); | ||||
|         round(inv_rnd,  b1, b0, kp -  5 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  6 * N_COLS); | ||||
|         round(inv_rnd,  b1, b0, kp -  7 * N_COLS); | ||||
|         round(inv_rnd,  b0, b1, kp -  8 * N_COLS); | ||||
|         round(inv_rnd,  b1, b0, kp -  9 * N_COLS); | ||||
|         round(inv_lrnd, b0, b1, kp - 10 * N_COLS); | ||||
|     } | ||||
|  | ||||
| #else | ||||
|  | ||||
| #if (DEC_UNROLL == PARTIAL) | ||||
|     {   aes_32t    rnd; | ||||
|         for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd) | ||||
|         { | ||||
|             kp -= N_COLS; | ||||
|             round(inv_rnd, b1, b0, kp); | ||||
|             kp -= N_COLS; | ||||
|             round(inv_rnd, b0, b1, kp); | ||||
|         } | ||||
|         kp -= N_COLS; | ||||
|         round(inv_rnd, b1, b0, kp); | ||||
| #else | ||||
|     {   aes_32t    rnd; | ||||
|         for(rnd = 0; rnd < nr - 1; ++rnd) | ||||
|         { | ||||
|             kp -= N_COLS; | ||||
|             round(inv_rnd, b1, b0, kp); | ||||
|             l_copy(b0, b1); | ||||
|         } | ||||
| #endif | ||||
|         kp -= N_COLS; | ||||
|         round(inv_lrnd, b0, b1, kp); | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     state_out(out_blk, b0); | ||||
| #ifdef AES_ERR_CHK | ||||
|     return aes_good; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if defined(__cplusplus) | ||||
| } | ||||
| #endif | ||||
		Reference in New Issue
	
	Block a user