Microsoft, _

Multitasking MS-DOS -
Product

Speciﬁcation{_f;

Sne ToueX

. S®TN Uvshy

=5 2 it YeSimi=h
g5 s TN, el

>
o
-

.
L

- e s
b

Sy ,/) =
S —VAPSTRACT

This d ?&Qent describes the KiS-DOS 4.0 system calls thut have been changed or

added since the MS-DOS 1{ release.
S /"

9

1. INTRCDUCTION

The purpose of this document is to introduce the new MS-DOS 4.0 syster calls, and to
describe the changes made to existing MS-DOS calls.

This document is one of a series of related documents. They are:

Microsoft Multitasking MS-DOS Product Specification OVERVIEW
Microsoft Multitasking MS-DOS Product Specification DEVICE DRIVERS
Microsoft Multitasking MS-DOS Product Specification SYSTEM CALLS
286 and 8086 Compatibslity L
Microsoft Multitasking MS-DOS Product Specification INTROD UC,TTON
Microsoft Multitasking MS-DOS Product Specification MEMORY/AMNA G,EMEN T 3\
Microsoft Multitasking MS-DOS Product Specification DYNAMI¢ LiNKING -*\\ _.":_::-
Microsoft Multitasking MS-DOS Product Specification SES ION X Ngm '

>

2. CONVENTIONS

In this document, calling sequences for the systefm
call symbolically with the function number for th 3
names for the system call function numbers ar l;'\sf‘n h
recommended that the symbolic names be us 9;;\' t '\';};\th’er ude files which deﬂne
symbolic names and data structures for spe ﬂc s tem ca ﬂSg ‘mentioned under the specific
calls to which they apply.

Some new system calls are invokéd vi the traditional INT 21 interface, others are pro-
vided only in library form. The llbraﬁdroutm are 1
soft “CMERGE"” C, Pascal and Fortran.¥ Other
special invocation subroutines just hke the ones they
tions. The calling sequence fop-the:
conform to the MS-DOS 4. me‘mely"

and non-conforming applic, ti%;%’

ages\ymay use these functions by creatmg
I tly must use for lNT 21- based func-

3. DEFINITIONS
Process
A pro,c/ task)
of per rocess ta
Process ID (PI

The Proccss}B\used to lﬂentlfy a process is a 16-bit number unique to every process in the
system. \ J’

Command Subgroup ID (CSID) '
The Command Subgroup ID is a number that is derived from the PID. It is used to identify
all processes that have been spawned by another Process, either directly or indirectly.

Zombie Process

Pragram and all the variables associated with it. This includes a set
mai améd by the system.

After a process has terminated, it is placed into a special state called zombie to preserve its
exit code. This exit code may be examined later by the process that spawned it.

4. PROCESS CONTROL CALLS

Below is a list of process control calls. These calls are described in detail in the following
sections.

Exec Start a new task.

Walt Return child termination code.
CWalt Wait for child termination.
Freeze Stop a process.

Resume Restart a process.

Sleep Delay process execution. .
Kill ~ Terminate a task. /‘/\3
foAaf A e
4.1. EXEC—Start a New Task fled iR e

o i LS
Exec is used to run other processes. These are called “child” procasse: bgcausigygy were

created by the current process, inherit some of the environ n¥such as open ’ﬁigjh@ndgs) from

the ‘‘parent’’, and are susceptible to some forms of parentakgfg'ge_ss sontrol. <’.-

N =
Calling Sequence:

MOV AH ,Exec

MOV AL ,Subfunction

LDS DX,Name

LES BX,Parmblock

MOV CX,Mode

INT 21H
Returns:

CARRY SET IF ERROR
ELSE
AX = PID/CSID of chi!d

t
;
]
]
=l
b=l
)
e
®»
]
(3]
<
o
-
2
e
o
=
&
2

2R

<
-

5
nis Task

=
75

4.1.1. Subfunection

S§t Synch &
This mode of the x‘"‘i;eall is co '%ﬁzﬂle with the MS-DOS 2.0 Exec call. It will start a
new task, but the paren ‘@@m?f m6il the child terminates. Refer to the 2.0 MS-DOS
Programmer’s Reference Mbgual,_Functiop”4BH, for details. Note that if a task uses this call to
start and wajt for a child, thent=shoafd use the Walt call to retrieve the terminaticn code for
the child./ésn the CWalt call will return an error as there is no child to Wait for. The Mode
argument<{s not ukg. Y

>

o T r
4.1.2. Subfunetion 1>MS-BOS Reserved.
This function _{eserg;d,for use by Debug.

v
4.1.3. Subfunction 2 - MS-DCS Reserved.

4.1.4. Subfunction 3 - Load Overlay

Same functionality as in MS-DOS 2.0. Refer to the MS-DOS 2.0 system calls documenta-
tion for details. The Mode argument is not used.

= 4ie

4.1.5. Subfunction 4 - Start Asynchronous Task (Exee & Go)

Same format and operation as Function 0, except that the parent task continues to run in
parallel to the child task. If Mode = 0, when the child terminates it is placed in a zombie state
to preserve its return code until the parent executes a CWalt system call.

If Mode = 1, then the child is not placed in a zombie state when it terminates; it disappears

and its result code is discarded. If a process executes a child using this mode, there is no vay for
the parent to wait for the child.

4.2. WAIT—Return Synchronous Child Termination Code T
This is the same call as in MS-DOS 2.0. 2

Calling Sequence:

MOV AH Wait ; 4Dh
INT 21H
Returns:

AX = Return code from Child

Note that this call should only be used with E;ec s
bage if used with any other form of Exec. o

parent little good to kno

kas completed and exited; the parent needs to
know that the entire family ol

mand subtree, has completed.
'ltﬁnctmn 4 mode 1) are unknown to CWalt, and do

Children started as or' 1
not otherwise affect its operat

Calling Se)m:\m;\‘e:
MOV AH, O i ¢ N, 8Ab

MOV L,Pan\gu\ A =0 if to wait for command subtree
. =1 if to wait for any child

MOV BH Rlag /‘) ; =0 to suspend if children exist
3 s ; but are not dead yet
N i =1 to return if no child currently
v : dead (’C’ clear, (BX) =10)
MOV CX,PID ; PID of head of command subtree
INT 21H '
Returns:

CARRY €ET IF ERROR
AX = No_child

ELSE
AX = Return code from Child
BX = PID of child

4.4. FREEZE—Stop a Process

This call stops a task or a command subtree by removing it from the run queue until a
Resume call is made for that PID. The task may not be stopped immediately because it may
have some resources locked that should be freed first.

Calling Sequence:

MOV AH,Freese ; 81h
MOV BX,Flag =0 if to freese for command subtree
=1 if to resume specific task

MOV CX,PID PID of head of command subtree
INT 21H e
5 »/. v
Returns: gl aedes
CARRY SET IF ERROR RS TaE s B
AX = No_such_process ' = '/./ ‘-;._‘
Q z ;-\‘ ‘-:‘j
".‘;7- . _// :,:;
4.5. RESUME—Restart a Process o PArTas
This call restarts a process previously frozen via the méic'_é?st\e\m call< '_;;"/
Nooe TN =
NN
Calling Sequence: o N LY
,‘: g
MOV AH, Thaw B2RC S e
MOV BX,Flag : i ga<resume for, command subtree
; A1 'f%é;’.ﬁ;@g sp€cifif task
MOV CX,PID “ PIYof b d~ef “Command subtree
INT 21H SR
Returns:
CARRY SET IF ERROR /
AX = No_such_proce]
= Not_frosen «

o,

4.6. SLEEP—Delay Pr LEI_INE\Xgént o
The Sleep call suspéndsthe curréirttadk for the specified time period. The actual time it is

tick or twoXdepending on the execution status of other tasks running
€35, then thej p¥adess will forego the remainder of its CPU time-slice,
‘l&f@:\its t:sfice. Otherwise, the time is given in milliseconds and
gon-of the schéduler clock.

asleep may be off by a clg
in the system. If the ti

but will be scheduled nor
will be rounded to the reso

Calling S/q‘&q:ce:

MO ANI-eep N ; 89h
MOV C)(!T?’Qe e
INT 210~ s

4.7. KILL—Termirate a Task

This call terminates a task or command subtree and can be used to terminate the task that
issued the call. Assuming that the task is not an orphan, the task’s parent will get a “process
killed” termination code returned when it does a Cwalt call.

Calling Sequence:

MOV AH,Send_Signal ; 8Dh
MOV AL , SIGTERM
MOV BH,0
MOV BL,Action ; =0 to kill command subtree
v =1 to kill just specified process
MoV DX,PID S~
INT 21H ~ T
Returns: i -
CARRY SET IF ERROR - Ty oo
AL = error_invalid_function S e N
Invalid Action. Rae '/fAfa
AL = error_invalid_handle P % e
No processes matched the PID gtyen: /‘-e;:;/f
or some process had error zcgfﬁ" Sa

for the signal.

%iﬁ?;
e

5. PROCESS INFORMATICN

The process information calls are:

GetPID Return Process ID.
Priority Get or set task priority.

These are discussed in more detail in the next sections.

§5.1. GETPID—Return Process ID

This call will return a process’s PID and the PID of the task that spawned it. The PID may

be used to generate uniquely named temporary f{iles (see also CreateTemp), or_for communica-
tion via signals. YT

Calling Sequence:

MOV AH,GetPID :
INT 21H
Returns:
AX = PID
BX = Parent process’s PID
CX = CSID

5.2. PRIORITY—Get/Set Task Prlorl/t/

This call allows the caller to learn or/chan cess. A process’s priority
can range from -15 to +15, with 0 being the normahpriority. The argument to this call specifies
a signed delta-value; that value is adég tg~ ctu'n ¢ priority, the result is restricted to the
legal range, and the new value is returne <A de -value-d{ 0 thus returns the current priority.

Priority -15 means that this task will run only

ity +15 means that this task i _{\;":r,‘r_\'ve whatever
Prevent system starvation, any sunpablé-task receives at least 1 /10th of a second service at least
¢ the pricrity of a process.

every 3 seconds.) It may n bg;pT)s?lb “t'gsi
e G
;-:j ECRY
. ey
' _/‘f P
1 2

ere is no othker runnable task; prior-
resources it requires. (In order to

Calling Sequence:

MOV AH,Setpri

MOV AL ,Priorit

MOV CX,PID o
INT 21H

Returns: /

CARRY\SET 1\,5&;{0::// Y
AX = sugh_protess
=I?:§ id_p[r"iority

ELSE

/ . .
Rrocesp’ priority
™ rd

N

-8-

6. INTRAPROCESS CONCURRENCY CALLS

MS-DOS 4.0 provides calls to allow the creation, control, and termination of multiple
threads of execution within a single task. A high-efficiency memory-based semaphore mechanism
is provided to control access by multiple threads to critical sections and monitors within the task.

The Thread system call allows a program to create additional threads of control and thus
be “simultaneously” executing its code in several spots at once.

A thread is not another process. If a process is running with two threads they are nearly
identical: if one thread issues an Open system call and gets back handle #4, the other thread
can do a Read on handle #4 to read that data. The only thread-specific juformation maintained
is the register contents. Any thread may make system calls and “speak_f,”bn bebalf of the process.
If any thread issues the Exit system call then the process will termi'ﬁatedf’thg;cfore :tele‘i‘ggating
all its threads. e

=4
A task's initial thread is called thread 0. This thread cannot be E‘rga%d»ﬁa the Thread
system call, and is the thread that is interrupted in response t«q{%{tem AL —

' fo -

. LY

L

-

The intraprocess concurrency calls are:

Thread Create or Terminate a Thread. /N
CritEnter Block on memory-based semaphor{z g L
CritLeave Release memory-based semaphgge. _{

These calls are detailed in the following sectioxs. /

A

6.1. THREAD—Create or Destroy Pr
>

Calling Sequence:

MOV AH, 148 - ;

MOV AL, <flag S , 1 to terminate)
MOV BX, <ofiyeto 443k in DS segment>

MOV CX,0 =

INT 21H
Returns:
If (AL) =0 (create
CARRY set if error‘-':&;_g";‘-
\AX:Too Many Threads
CAKRY™lear if OK
\(\\L) =0 T Rarent thread
(N= if child thread (using new stack)
S d
erminate thread)
d

CARRY set if erpor

AX ="1¥legal Termination (attempt to terminate thread 0)
Does not return if no error

1f (AL) = 1

8.2. CRITENTER and CRITLEAVE—Block Process on RAM-Semaphore

CritEnter and CritLeave are two new system libary routines that are used to interlock
access to critical data structures that are shared between two or more threads or processes. They

implement a classic semaphore mechanism and can therefore be used to synchronize activities as
well as protect shared data areas.

-9.

CritEnter and CritLeave operate by means of a flag word in RAM. The flag word
should be initialized to zero if the semaphore is to be initially unset (unlocked), and initialized to
1 if the semaphore is to be initially set (locked). A near pointer to the semaphore word is passed
to both CritEnter and CritLeave. (Alternative versions called FCritEnter and FCritLeave
take far pointers to the semaphore word, but are otherwise identical.)

When CritEnter is called, it checks the status of the flag word. If it is unset, then Cri-
tEnter sets it and returns immediately to the caller. If the flag is set, CritEnter blocks the
thread until the flag becomes unset, then tries again. When the thread is done with the protected

resource, it calls CritLeave. CritLeave then unsets the flag word and starts any threads that
were blocked waiting for that particular flag word.

CritEnter and CritLeave are similar to Waitsem and Sigsem (see Section 7, “Interpro-
cess Communication’), except that CritEnter works via a RAM location whereas Waltsem
works via a file system entry. CritEnter is very efficient for closely coupléd threads and
processes that share memory; Waltsem is useful for interlocking uncoulpled_,proée;sseé.f £

Calling Sequence:
in C
static word flagword = 0;

CritEnter (flagword);

CritLeave (Bagword);
in Assembly

flagword .word ©

MV AX,OFFSET DS:lagworq<; P
PUSH AX 7

CALL CritEnter e

MOV AX,OFFSET DS:
PUSH
CALL

-3

CritLeave / -2 >

«-10-

7. INTERPROCESS COMMUNICATION CALLS

Pipes reside in a virtual directory calied \PIPE. All named pipes must begin with the
string \PIPE\. See the document Microsoft Multstasking MS-DOS Product Specification OVER-
VIEW for a discussion of pipes.

Pipes are different from files because writes to a pipe will-not be interspersed. A process
issuing a write to a pipe will be blocked until it can write all of the data specified to the pipe. No
other process may write to that pipe until the write in progress completes. Any process that
attempts to write to the pipe is blocked.

Named pipes are created and accessed via the Create and Open system calls. They are
used to communicate with other non-related processes. Anonymous pipes are created via the
Pipe system call. They are used to communicate between parent-chjld" or -sibling-related
processes. All pipe I/O is done via the standard Read and Write systém calls. All pipes are
closed via the standard Close system call. Ry ol e e

The interprocess communication calls are:

Plpe Create an anonymous pipe. ;
CreatMem Create a shared memory area. s
GetMem Access a shared memory area. = g
ReleaseMem Release access to a shared memory Qx;ea.
Creatsem Create system semaphore. P
Opensem Open system semaphore. \\ ,.'-_;_ f\
Waltsem Check a system semaphore./\ S 8

Sigsem Release a system sema:)hf(e. /

These calls are detailed in the following sections.

Pipe will create a new anonymous pipe. It retuens two handles, one for reading the pipe,

the other for writing. The z;i;?pf'gg1 moetes. i ¢ If the size parameter is zero, then the
pipe will be created with the e(ﬁdt&%?jé:‘;:' >

=0 —_

R
Calling Sequence: (;};{' ~
MV AH MakePipeic
MOV CX,Sise 3
INT 21H
Returns: g
CARRY ,SET\IF ERROR
/Ax=wuﬁicient Anemory
ELSE}(\ 2 N
= read\handfe -
BX > write" ndle!./
v

w11

7.2. CREATMEM—Create a Shared Memory Area

This call is used to obtain a memory region for private use between two or more tasks. If a
shared memory region with the same name exists already, the creation fails.

Shared memory areas have no underlying structure. It is up to the cooperating processes to
define their own I’ormats and protocols.

Calling Sequence:
MOV AH,CreatMem ; 84h
MOV CX,Sise
LDS DX ,Name
INT 21H
Returns: e
CARRY SET IF ERROR P 4
AX = Invalid_pame 2ui gt .
AX = Not_enough_memory j otk
ELSE TR P
BX = pointer to shared memory (paragraph #) X, am = S
’ X \.-:« s 5 = ‘\:;
& iy
7.3. GETMEM—Obtain Access to a Shared Memory: Area b <" s
This call is used to obtain access to an existing shared m\emory Before executing this
call, the shared memory area must have been created thmugh the Crutmm system call.
=2
Calling Sequence: \ " = i ‘1‘
/ 2) “i
MOV AH,Ge tMem : L 4
LDS DX ,Name / ot N
INT 21H s T
Returns: v =
CARRY SET IF ERROR < o
AX = Invalid_pame v',
ELSE

BX = polnter to Shared memoery (para
CX = Sise in para

This system call terpilh;ies the accgs@e] a process to a shared memory area. If the refer-
ence count for the memor¥ area-i

deallocated.

Calli S :
alling ;lquﬂce

Aﬁ\R\elexiyﬂkx ; 86k
DX Nln{e :,'

1H 5 /

£

/

CARRY SET IF ERRCR,”

AX = No_such dame

-12.

7.5. CREATSEM—Create System Semaphore

Creatsem creates a binary semaphore pseudo-file for subsequent use by Opensem,
Waltsem, and Sigsem. The semaphore can then be used to manage mutually exclusive access
to a resource, shared memory, or a critical section of a program. The semaphore is a “pseudo-
file” in that its name takes the form of a file in subdirectory ”\SEM\”, although such a subdirec-
tory does not exist. MS-DOS 4.0 keeps the semaphore rames in memory. A future release of
MS-DOS will support an extended file system that will allow the semaphores to be stored in a
disk subdirectory. This will allow the user to control access to semaphores in the same way that
he will be able to control access to individual files.

A different semaphore facility, CritEnter and CritLeave, was described previously. They
implement a high-speed semaphore mechanism but require that the using processes have shared
access to a flag word. This is called the RAM-semaphore facility. iy

Creatsem, Opensem, Waitsem and Sigsem are called the “‘systemn sengaf;bore" facility.
They use a (pseudo) file system entry instead of a RAM location. This gives them muach more

flexibility then the RAM-semaphore mechanism because: T et e .

- h = S N I3

‘ -

=)

Lafug

1) They can be used by processes which share no memory. \\' R A
2) They can be used via a network by processes which are m,mﬂ{g onh&zﬁifn’mcjiﬁe?;r

3) Access to system semaphores is protected via the same.jﬁé_’cpa.mgn\which .pi'qtgéff,xécess to
files. e n S
% 3Fj§ﬁ

o
Seles
\.
~

3\
Valne to clear.

Creatsem is used to initially create a system semaphere and sef-if:s’:
S

el

Calling Sequence:
MOV AH,syssem
MOV AL, 0
MOV BX,0777H
LDS DX, s emname
INT 21H
Returns:

CARRY SET IF ERROR

(AX) = error code T T~
illegf){gig;;{ﬁim b
semaphore-siTeadyE e

CARRY clear if JOKZ=" o

(AX) = s emnaim-33

F <A ' 2
e, i =7

DN A

-~
Semname is the name Q&ngapﬁri It must be in the format of an MS-DOS file in a
subdirectory called \SEM\, such-as:\SEM{PRINT.LCK.

Scmnu/m Ts\{l_xe value supplied to Waitsem and Sigsem to control the semaphore.

N / s
7.6. OPENSEM—Open‘an E£isting System Semaphore

Opensem ope 2 syst,e{ﬁ semaphore of the specified name and returns the unique sema-
phore identification number.4emnum used by Waltsem and Sigsem. Creatsem must have been
previously called to create the semaphore before it can be opened. Typically the first user of the

semarhore creates it via Creatsem; subsequent users open it via Opensem. Opensem does not
test or change the value of the semaphore.

-13-

Note that, under MS-DOS 4.0, system semaphores reside in a memory buffer rather than on
a disk file system. This means that when the last process which has a semaphore open (via
Creatsem or Opensem) exits, the semaphore disappears and must be re-created by its next
user.

Calling Sequence:

MV AH,syssem
MOV AL, 1 ; opemsem
LDS DX,OFFSET DS:semname ; (DS:DX) = name string
INT 21H
Returns:
CARRY SET IF ERROR i
(AX) = error code o =
illegal name format s =
semaphore does not exist e w i e
CARRY clear if CK 2 S
(AX) = semnum e e =) ::3::‘-}
& ‘ ‘-A_ S _-\‘ 4».:'
N e ae® L E
\\/ Ty

Semname is the name of the semaphore. It must be inﬁél?e&tormat of an.M'S-ﬁQS file in 2

- -~

subdirectory called \SEM\, such as \SEM\PRINT.LCK. “.i. \ & :;/

Semnum is the value supplied to Waltsem and Sl{sem to\;c.d ﬁdl\t]‘[:\semaphore.
. . Y R . \
s sl

—

~,

7.7. WAITSEM—BIlock on a System Sem;pk\m}e{:f_é\ o
S M =2

Waitsem checks the status of the specified T3 ;
Waltsem sets it and returns control to t ca

blocks the calling thread until the semaphore is re

trol to the caller. év S
A flag value can be passed to the Waltsem
error code to the caller if the semaphore is busy.

Calling Sequence:

MOV AH,sysyem- > P

MOV AL,8 ;j’ o7} Waitsem

MOV BX, flag = 2 0 if to block, 1 if not to block
MOV CX,aemnum'r‘—':-:’i\ } #0HCX) = semaphore number

,(AX\) = error code\;’;
illegal semaphore number

\\#emapho g set (only if (BX) =1)
CARRY cle:\if >)
T P

7
rd

Semnum is the v%h{e rl_eti;rned by Creatsem or Opensem.
4

-14 -

7.8. SIGSEM—Release a System Semaphore

Sigsem is called to clear (“release”) a system semaphore which was previously set via
Walitsem.

Calling Sequence:

MOV AH,syssem

MoV AL, 4 ; sigsem

MOV BX, 0

MOV CX, semnum i (CX) = semaphore number
INT 21H

Returns: .
CARRY SET IF ERROR
(AX) = error code oY
illegal semaphore number
semaphore was not set 3

CARRY clear if CK , g B Bl o .j-\,_-
4 e Y
{ 3 L . 2y
\ e TN
Semnum is the value returned by Creatsem or Opensem e o _,J

T o A
‘,_\ of =T ey

=15~

8. INTERRUPT VECTOR CALLS

In MS-DOS 4.0 the 8086/88 interrupt vector table must be managed as an MS-DOS
resource. Whenever a program wants to use software interrupts, it must use these calls (an
extension of the MS-DOS 2.0 calls) to place the vectors in the table. Interrupt vector usage is
identified as being one of two classes by the DOS. Local interrupt vectors are suitable for use
with software interrupts within a single process. Global interrupt vectors are suitable for use
when dealing with hardware interrupts or when using software interrupts as a means of sharing
code or interprocess communication (IPC).

Global interrupts are provided mostly for backward compatibility. The newer mechanisms
provided by MS-DOS 4.0 should be used for code sharing and IPC.

/ v
The interrupt vector calls are: : 4 g T
7 3 e e T
GetVector Get per-process interrupt vector. 'E 4: S s =y
SetVector Set per-process interrupt vector. \\ P ;‘
Set_Global_Vector Set system-global interrupt vector. : p S Ay
Unset_Vector Unset interrupt vector. ;",‘i\. LA
These calls are detailed in the following sections. S ‘\ S :’/
e
8.1. GETVECTOR—Get Pcr-Process lnterruﬁ.t{V_ect‘ S o

Same as in MS-DOS 2.0. See the MS-DOS’EQ_A\!"S:'.&;OSL&ngﬁ;mc;L Reference Manual,
Function 35H. Nz s

8.2. SETVECTOR—Set Per-Procha lf}té’ upit ’
Same as in MS-DOS 2.0, except thatthe call'm:

i{ another process kas set up the vec-
tor as a global vector. In this case, the process issui

.the€all will be terminated unless it has

indicated via GetExtendedError-t At~t can tolerate mew error conditions. See the MS-DOS
2.0 MS-DOS Programmer’s Réference:Manual Function 25H.

e

=5 =R

8.3. SET_GLOBAL_VECTAR—Set System-Global Interrupt Vector
4 an interrupt vector that will be shared by all

Set_Global_Vector ‘p_i;l:rbug,d/foi 5
‘%‘Q fthe vector hzs already been set as either a local or

processes in the system. TheQall will-fail |
global vector. =

// N .
: Sh A
Calling SQu\ence\\ e
MOV ,Set>globhl _Vector ; 8Fh
MOV Intr - o
LDS DX,Vector 7
INT 21H - =

% e
Returns: R
CARRY SET IF ERROR
AX = Fixed_vector
Vector_used
Global_limit

-16 -

8.4. UNSET_VECTOR—Unset Interrupt Vector

Unset_Vector may be used to reset an interrupt vector that had previously been set as a
global vector or as a local vector. The vector will be available for re-allocation by other
processes. If the vector had been set as a global vector, the value of the vector will be restored to
the value it had before the Set_Global_Veztor call.

Calling Sequence:

MoV AH,Unset_Vector ; 90h

MOV AL, Intr

INT 21H
Returns:

CARRY SET IF ERROR el

AX = Not set oo i =

B LAt

9. FILE MANAGEMENT CALLS \ e S

Pl
Ttitasking environ-

ment. N \ K T ;"/

The file management calls are:

This section describes calls related to the management gl‘ﬁ_l\es in 3o

CreatTemp Create a unique file. ' = ".7'_-___‘ \
CreatNewFile Guarantee a new file. \\ ko
Lock Prevent access to 2 r:zA)f file.
Unlock Release a locked region.

Open Gain read [write a/cc'@ss toafi

These calls are detailed in the followmggqcvﬁﬁ;s.

CreatTemp generates ¢ " uniguena ne and attempts to create a new file in the specified
directory. If a file already #xist-fmr-that-dirctory, then another unique name is generated and
the process is repeated. Cfgg:ﬁ'l‘emp is\g @é@teed to produce a unique name and to avoid any
race conditions. b= Uy

RChY |
} =
g B

Calling Sequence:

MOV AH,CreatTempF¥:

LDS ,~DX,Directory

MOV S LAttribute

INT 21H\‘ \\
Returns: % .\\\ !/".

CARRY set error 7

AX = ézrror code
CARRY clear if OK
AX = file ‘andle
The file name is appended to the directory string

Programs that need temporary files must use this system call to generate temporary files to
prevent name conflicts in a multitasking environment. The Directory string must have at least 13
unused bytes at the end.

w17«

0.2. CREATNEWFILE—Guarantee New File

This function is identical to the MS-DOS 2.0 Creat system call except that it will fail if the
file already exists. A multitasking system must be able to use files and their existence as sema-
phores. The CreatNewFlle system call may be used as a test-and-set semaphore.

Calling Sequence:

MOV AH,CreatNevwFile ; 5Bh iy
LDS DX ,Name
MOV CX,attributes
INT 21H
,"\\
Returns: //. el
CARRY set if error e e St
AX = error_file_already_exists R s _"«A
The especified file already exists = s ;ifx
CARRY clear if K e e o~ LI5S
AX = file handie S in =
’/ _/.f .":;
/— oCr s 4
9.3. LOCK—Prevent Access to a Range of a File L g ¢

Lock provides a simple mechanism for excluding other processés a?c\ess to regions of a file.
Lock will inhibit all reads and writes to a file. ',l‘asks hat try te\ sccess a locked region are
suspended until the region is released. e *\ 1 ,_-__,J

The locked regions may be anywhere in ,hngc\a} le-ibekmg’ bex,dnd end-of-file is not an
error. It is expected that the time in whick regighs are | "d.mﬂ b&s‘hort indeed it should be
considered an error if they are locked for ore -

Duping the handle will duphca{acce :
across the Exee system call.

¢
Programs must not rely on whether they ha

write access, but should attempt to
lock the region desired and exa

. Future versions of the Leck sys-

MOV SI,LengthHigh- :
}«%\ DI 'Lengt bhow- -7
A 21H

Returns: \ ‘t"
CARRY Nget 11\\Jr
= error Ip{alld handle

Theihlndle in BX was not a valid opened
\\ h&ndle
= Qtr_nr_lock_violttlon
YThe region (or a piece of the region)
specified was previously locked either by

the current process or by another process.
CARRY clear if no error

range locked

-18-

9.4. UNLOCK—Release Locked Region

Unlock releases the lock issued in a previous Lock system call. The region specified must
be exactly the same as the region specified in the previous lock-

Calling Sequence:

MoV AX, (LockOper SHL 8) + 1 ; 5CO1h
MOV BX,Handle

MOV CX,OffsetHigh

MOV DX,OffsetLow

MOV SI,LengthHigh

MOV DI,LengthLow

INT 21H

Returas:

CARRY set if error
AX = error_invalid_handle
The bhandle passed in BX was nmot open.

= error_lock_violation

The region specified was no;gzhﬁb
one that was locked by that p ;gep‘
CARRY clear if OK Sral s
region unlocked

£
9.5. OPEN—Gain Read/Write Access to a Fifs. = -

Open is the same system call as in MS-POS

code now has meaning. >

Calling Sequence: /e ™
& ey
MV AH,Open <,f‘;
MOV AL ,Access

LDS DX,Pathname
INT 21H
Returns:
CARRY set if Erro

AX =

to open a directory or

volume-id, 6r open a read-only file for
//A\\\ writing.
\gierror_t o}gany_open_ﬁlel

Igere ere no free handles available in the
T cdwredt Process or the internal system tables

were ful)
CARRY clear\if OK /7
le-handle

W

/.

« 10

The following values are allowed for the low nibble of Access:

Access Byte—Low Nibtle

Access

Function

0

The file is opened for reading. This open will succeed only if the file is
not previously open in deny read mode, or in deny read/write mode (see
below).

The file is opened for writirg. This open will succeed only if the file is
not previously open in deny write mode, or in deny read/write mode (see
below).

The file is opened for both reading and writing. Tpis'apep‘-‘will succeed
only if the file is not previously open in dery read mode, or deny write
mode or deny read /write mode (see below). Lo e

The high order bit of Access indicates whether or not this file
processes (created through the Exec system call 2 b
the open file, while a 1 indicates that the handle is private tbxtﬁe}cm}g&

The remaining 3 bits indicate the sharing mode fgithe ﬁle::»‘."\. s

:'\ (Ada!
T -

% nberited By child
) 0 indicatés thag the child prfocess will inherit

t process. -

#% N

<

Access Byte—High Nibble

Access

/
Compatibllity mod;./ A particular machine may open
the file any number‘of timemwith this mode, provided that the file was
not opened previausly with-one{ the four modes below. '

Deny read/wrl‘ie\ mode. his o sharing mode will succeed only if
the file is not alreaay open i\compapibility mode, or in read or write

access by y other process (ine¢ g the current process). In other
operat-igﬁs;vgé}&;, is is known as exclusive mode.

Denyﬁbi:ﬁi* —__}%s open sharing mode will succeed only if the file
is n tv__;agfeady 0 '{'@gompatibility mode, or in write access by any
othef precess. e

S
= g

fligbpen sharing mode will succeed only if the fle is
I .,lnfcgﬁ'zpatibiUty mode, or in read access by any other

N O
.= X

process,

Deny ncne mode. This open sharirg mode wiil succeed only if the file is
not alreadx open in compatibility mode.

Y

e Y / a
: "4
ite pointer js"set at the first byte of the file.

~

~

used for subsequent 1{O to the file.
N

The returned file handle must be

-920-

10. SIGNAL CALLS

Signals provide a software interrupt mechanism that may be used to handle exceptional
conditions or simple interprocess communications. The user may install a signal handler that will
be called when an event occurs. The signal handler will be called either after a hardware inter-
rupt has interrupted the user process or at the completion of a system call. A few system calls
(Cwait, Sleep and Read from a character device) can be interrupted by a gignal. The signal
handler has the option of returning an error indication from the system call or restarting the sys-
tem call.

Symbolic definitions of signal numbers and actions are given in the include file
SIGDEF.INC. The contents of the file are:

NSIG EQU 16 e
: Signal mumbers 2 i
SIGKB0O EQU 1 ; “C or user defined, key A -
SIGINTR BQU 1 . “C or user defined key _~ oA
SIGKB1 EQU 2 ; alternate key |ntercept- FETEN apen
SIGKB2 EQU 3 ; alternate key lnz€~cegt i . 3
SIQMUF EQU 4 ; special key Apterce 4‘~1ﬁ MJF_/
SIGDIVZ EQU 13 ; divide by sero\gtrap
SIGOVFL BQU 6 i INTO instiwction: /
SIGHDERR EQU 7 ; INT 24 type. thmg\\ \
SIGTERM BEQU 8 ; program termhn&t;on g\
SIGPIPE EQU] ; brokeb pipe S
SIGUSER1 BEQU 138 ; Tesérved for wsers deﬁa tion
SIGUSER2 14 ; re rred r user definiition

WJ \ ¢ _‘g ,f ﬂY
: Signal actions Sl 7
SIG_DFL EQU 0 3 rmlna? *ppoceln‘;}}:ecenpt
SIG_IGN EQU 1 ; Sgnore
SIG_GET EQU 2 y : 'gnal is acc pf’ﬁ
SIG_ERR EQU 3 ' : er gets error
SIG_ACK EQU 4 ledge received signal

The signal calls are:

Set_Signal_Handler H@\ al.
Send_Signal rsignal

Calling Segﬁe

AH, Set aSig Haqﬂler ; 8Ch
SlgNumb
BL", ctlon

LDS DX Vee tor
21H a0
N
v

Returns:
CARRY SET IF ERROR
AL = error_invalid_function
Invalid SigNumber or Action
ELSE
AL = previous action
ES:BX = previous vector

-91-

b 3

If Action is 2, Vector must contain the address of a sigpal handling routine. SigNumber
gives the number of the signal handled by the rcutine. If Action is 0, a default action is installed
for the signal. Usually, this will cause termination of the process if the signal is sent to the pro-
cess. If Action is 1, the signal will be ignored. If Action is 3, it will be considered an error for
any process to send the signal to this process.

10.2. SEND_SIGNAL—Issue Signal

Send_Signal is used to send a signal event to an arbitrary process or command subtree.
€:nd_Signal is normally used to send SIGTERM or SIGIPC, but can be used to send any sig-
nal.

Calling Sequence:

MOV AH,Send_Signal ; 8Dh 0 »
MOV AL ,SigNumber # e s -
MOV BH,SigArg Wb Jat T i
MoV BL,Action 7 =0 for emtire subtree = -~ Iy
i =1 for single procesds. X T, TN
MOV DX,PID N T
INT 21H N Ay
;‘\ T
Returns:) e
CARRY SET IF ERROR N P &_;’/
AL = error_invalid_function e A
Invalid SigNumber or Actian. e A

AL = error_invalid_handle et S gl
No processes matched the PIDgiven in DX. . 3
or some process had erroy ‘igt}k?peciﬁ;ed“‘.‘;
for the signal. /\ S ?3_\:// t;

10.3. Signal Handling Routine <

A signal handling routine will bcénte[thi
in AH and registers other than AX, FL,SP, CS, nd IP.
signal was taken. The value in AH will be the valve _that
Send_Signal call or a system- fired.yalue for sign
handler should distinguish begx eeliil_iﬁej:é_n;_

intercepted signals will be sg’ﬁt_ﬁt;&-tﬁf” e

The signal handler rr!ﬁy;like any of &_{véal actions to continue normal processing. It may

do a long return with theiearr - flag set tﬁg‘;ﬁw termination of the process. It may do a long

return with the zero flag se “*@n@i—ba\rry reset, ¥ cause any interrupted system call to return with
air crror. It may do a long \f' vlidi/é:e ro and carry flags reset, or an IRET instruction in
order to cause any interrupte QCeﬁ}ig}ﬂ' to be restarted. The signal handler may reset the
stack pointer to some previous valid stack frame and jump to some other part of the program.

In this case/ the signal handl;lz{shpuld invoke the Set_Signal Handler system call to reset the

signal that taken>, The s texij,call may be enteret—'.l with Action=4 in order to reset the sig-

nal without aﬂe&%g\the 'cur{entld{sposition of the signal.
7

2
Y 5
N ~

\\v’,-

-922.

11. IOCTL CALLS

The IOCTL call is used to perform hardware-specific cortrol functions. MS-DOS 2.0 made
no further definition; MS-DOS 4.0 expands the specification to include officially defined forms for:

USART Control.

This includes baud rate, stop bits, parity, ete.
TTY Control.

This includes raw/cooked mode, echo on, and echo of, etc.
Screen Switching Functions

These functions include querying the driver for the amount cf space it n\eeds to hold the
screen image, as well as command screen saves and restores. ot

»

Further, the IOCTL call will allow OEMs to define private IOC’.FL vatues that s\?ﬂl not

R

conflict with future MS-DOS developments. i = LB

The form of the IOCTL call used to control switcking between }cmgn,g-mups is detgﬂed in
the document Microsoft Multitasking MS-DOS Product Speczﬁc’auo DEVICE DRIVERS

12. AUXILIARY CALLS

The MS-DOS 4.0 auxillary calls are: /

GetExtendedError Return extendéd error
Setl{axMem Set maximym memory a
TimerService Obtain clock\&ié’s.

\to the MS-DOS operating system, many existing pro-
~new’error was returned for the old system calls. As a
) 3 into a simpler MS-DOS 2.0-level error.

Programs that are rnmfrom now tm;zare expected to handle errors by noting the error
return on the original systen _‘@‘,:gnd/{
program does not recognize t

result, when new errors hey are

Calling Segu
/7

ce:

MOV AH.\S‘Qh \\; GetExtendedError
INT Y
2oy 7

Returns: 4

¥
AX = extended-_error,“code
€ .

. V'/

-923.

12.2. SETMAXMEM—Set Maximum Memecry Allocation

This call is provided in order to stop old MS-DOS 2.0 programs from allocating all of
memory, and thus not allowing other programs to execute. It takes as argument the maximum
size in paragraphs that child tasks can obtain in their initial allocation. It returns the previous
value. A Size of 0 will not change the current limit, just report its value. The new limit affects
the current process’ descendents.

For example, if the screen manager wants to run a program that is known to allocate all
memory for its use, but does not really need it, it would issue a SetMaxMem system call before
executing the program.

Calling Sequence:

MOV AX, (ChildCtl SHL 8) + 1 ; 8301k —
MOV DX,Sise ; =0 if not to c]nnxe szMem
INT 21H R
Returns: ."! of - o *;'}S
AX = previoans MaxMem -‘ 2 '; B o
,\ N i /_’ «‘r’
12.3. TIMERSERVICE—Obtaln Clock Tics & /
This call links the address passed by the user to the scheauler tl o:ie \

Calling Sequence:

Lo &
MOV AH, TimServ ; 80 B
MOV AL Mode /\
LDS DX,Vector
INT 21H /

Returns: ' E

'C’ clear if mo error 2 23w

CX = tick interval, iléqlhu ondr

'C’ set if error
If Mode=1 then AX = error- code

If Mode=0, any pre‘(oﬂﬂy requ t.etf ElmerSevlce requested by this process will be dis-
continued. TlimerSevice/ is-¥utomatica fﬁécontmued when a task is frozen or terminated.
TimerSevice will be reestab@gd when a fﬁu}n task is reawakerad.

If Mode=1, the call anm Me*tdﬁtme pointed to by DS:DX will be called as part of
the clock interrupt service r “The: yi?ue returned in CX gives the approximate interval
between successnve clock times m‘mlﬂlseeo’ias rounded down to the nearest millisecond.

The total “tumber of TimerSevices depends upon the size of a table in the system. The

routine wil call\d\at interpdpt time, so it must not enable interrupts, it must return quickly,
and it must nob.call the\sy e

This syste\tajl is provided so that programs can maintain a kizd of real-time sense. This
call entails considerable overhead, so it should be avoided if possible.

\‘,
o i

