Microsoft

Multitasking MS-DOS
v Product

Spemﬁcatlon_b

MS-DOS 4.0 is a mul X; _'hn Jgrﬁ.tmg system, developed from and downwardly
compan le with MS-DOS 30~k supports true multitasking as well as a multiple con-

curre en lmage facility which gives the user the illusion of and benefits from
man depen nt com te}s Further, MS-DOS 4.0 allows most existing MS-DOS 2.0
applicatiogs to r Wi out/c’hangmg the MS-DOS 4.0 multitasking environment.

\ ,-’

~



1. OVERVIEW

1.1. Introduction

As personal computer and office automation software becomes more sophisticated, multi-
tasking capability becomes a requiremert. Multitasking improves system performance by allow-
ing the creation of background tasks such as print spooling. Further, it allows the machine to
participate in a network environment by running network file servers, mail system daemons, and
so forth. Finally, it allows the user to maintain several independent threads of activity, switching
back and forth between them at will.

The purpose of this document is to give an overview of the featurgy@f Hibrosoft’s multi-
tasking operating system, MS-DOS 4.0. These features are discussed in /nfore"_;c!gtéil in the follow-
ing specifications: i o e

’ ‘,’

‘/yl

® Microsoft Multitasking MS-DOS Product Specification OVER VIE{ R :\:

*,

o Microsoft Multitasking MS-DOS Product Specification DEVICE DRIVERS; -~ }_ 3
° Microsoft Multitasking MS-DOS Product Specification Sm CALLS /"_ I
° 286 and 8086 Compatibility \\"\“_ iy \;;/

° Microsoft Multitasking MS-DOS Product Spcciﬁcaf jon INTR\OQ‘UCTLQ{V

®  Microsoft Multitasking MS-DOS Product Spcciﬁp‘étid EMORHQFY&GEMENT'

o Microsoft Multitasking MS-DOS Product Spec B&k\ D P IC/LIM‘G)NG

o  Microsoft Multitasking MS-DOS Product Specifitationns By

Requirements s

MS-DOS 4.0 will run all well-béhaved gram®, that run under MS-DOS 2.0. “Well-
behaved” means those programs that use-tle DO ¢alls ekc]usively to interact with the machine
and the user, that make no assumptions as to where the progfam will be loaded or the amount of
memory available, and that otherwis: no machine-spesific information.

do mot:meet-this definition of good behavior, so MS-DOS 4.0 con-
tains a variety of featurey to-sGppo thg—’{ﬁpst common ‘‘ill-behaved’ program actions, thus
2.0 program&td run unchanged.

i~ e same t Ep;y;gf machines that presently run MS-DOS 2.0. To
i@n}ﬂ/tg §§machines should provide interrupt-driven I/O and

MS-DOS 4.0 operat
maximize performance for

a2
@
o

=
1.2. 8086 Atchitecture

The 8’88& architecture (a#d ¢spsequertly the 286 “‘8086-mode”) lacks two features useful in
3 multitasking™environment it h}f no protection and offers no hardware relocation capability.
While the 286 offers such featu}és, it does so only in a mode which is binary-incompatible with
the 8086. Therefm%\it is pot possible to pass these mew 286 features to old applications.
Nevertheless, there is a" ‘laVrag’e existing software base for MS-DOS 2.0, so it is unacceptable to
require all applications to run in 286 virtual mode (which would necessitate recompilation at a
minimum, and restructuring at a maximum) to solve these problems.

Typical MS-DOS machines have not added any hardware memory protection external to
the 8086 chip, so they have no protection against “buggy’ or il-behaved programs damaging
other programs or the DOS itself. Consequently, unless circuitry is added (which is easy to do),
MS-DOS 4.0 has no provisions for protection on 8086 machines or 286 machines when running old
applications in 8086 mode. MS-DOS 4.0 cannot restore or protect tasks from damage from 8086-
mode programs.



1.3. Definitions _
The following definitions are used in this specification:
Task

An independent program execution. Many tasks may exist simultaneously, and all have
their own copy of the DOS per task data structures.

Process
Used interchangeably with task.
Concurrency

The ability to run multiple screen-oriented applications at once by gi\{ing each its own logi-
cal (or virtual) full-sized screen. A series of keystrokes allows the u)?sref' “to switch-hetween
different logical screens. Only one screen may be visible at a{’ given }'nhe~(t‘he gg&sical
screen), although all may be running. e F e

LR =

Device Driver ikl _//'—:31
P P 3 E % .,’
Hardware-specific routine that interfaces the DOS to the- h3edware and 45 calleg”by the

DOS. Each device driver has a strategy entry point to t‘nzn R ratiofcand.afi interrupt
entry point which is called when the hardware has complete J;hgjqp.’ :

A

Interrupt £

An external event which requires immediate ser rarily) d"ié;{‘ﬁpting the 8086 from

its normal execution. In some cases, the igterhgpt r't‘ butin€ will’be exempt from time
slicing, but these routines typically are gptimjfed to [2 ?@Q\S@Sﬁ’l}aﬂrn to normal business
as rapidly as possible. T

A

Foreground Screen Group <’ <im0 .
i 5
That group of tasks (often only on \&as‘k) with the physical screen as seen by the
user. :

Background Screen Group

Groups of tasks associ
currency.

Keyboard Focus

Detached Task o=
\

Those t in a given screen group thzt are not the keyboard focus.

Blocked Tadk ‘\‘ o
A task that has }hqd 4 reguest to the DOS or to a device directly, and cannot continue
running untikthat requestfh’as been satisfied.

Runnable Task < Fé

N
Opposite of a block\e‘cfiask. A runnable task can be run should the scheduler so choose.

Task Switch
The DOS suspends execution of one task and resumes execution of another. The DOS must
switch internal data structures. This may occur many times a second.

Screen Switch

The DOS interchanges the foreground screen group on the physical s\creen with a back-
ground screen group. This happens only at the instruction of the user or to handle errors.



Ezec

The ability of one task (parent) to invoke another (child). The parent will be suspended
until completion of the child. All applications are child processes of the Command Inter-
preter which must run to completion before control is relinquished back to the Command
Interpreter.

Spawn

Similar to Ezec, except that the parent is able to continue running without being dependent
(at least initially) on completion of the child.

Shell e
A command interpreter that controls execution of a set of progrargs:’ B RES

S S~ e

2. THE DOS INTERFACE e R

\

e V% :,\':i

<alls are-used o con-

calls only to-interaetWwith the
g

-

Most MS-DOS functions are accessible through INT 21H The DO
trol every aspect of the machine. Programs should use the(‘ilQS'
user, the devices, or other programs. NGE=

The dynamic linking facility provides another P
support services. This will be discussed in Section 5. /—_ 35

plications to call on

Wy
mdpgihi'ﬁ&ause if he desires to
ﬂ\!f‘iés}r‘égﬁonjs_f' posed by other tasks.
;ﬁi&etu #s. However, the DOS is

The DOS is reentrant from the applicatiops_dev ::pe\r:s
develop a “background’ task, he need not}?//once ed wj

This task would no longer have dependencigf on e DOS

still synchronous from a given task’s standpoint, meaning that is given control while it is

still technically within the DOS (such 35 receiving ahardware interrupt directly), that task may

not call the DOS again. Similarly, th regtriction prevents device drivers from calling the DOS
\“" - g

except at initialization time.




3. PROCESS CONTROL

3.1. New System Calls

Several new or changed system calls are available to start, terminate, and control the exe-
cution of tasks or processes under MS-DOS 4.0.

EXEC

Used to start up new tasks. Tasks may be synchronous or asynchrorous. Also used to load
overlays.

WAIT/CWAIT Al

Used to wait for the termination of a task by the parent or lmtxatér of the task~as _well as
to retrieve the return code from the child. i :,{’ /_/’ P :3
EXIT e LETS S
Used to terminate a task and return a completion code to }Qare ’-‘:;)" _/f 2;;’
KILL . A
Used to terminate an external task. This is actually a spes;a] formof SENDS:&?

N
N

N

3.2. New Capabllities .
A major capability of MS-DOS 4.0 is multit DOS QO p};bgrams could create

child processes, but the child had to finish execution befoie Ehe_pargnt ceuld resume. Under MS-
DOS 4.0, the parent can wait for the child :}A/ogt)i?ﬁe executiig: =y - .

Child processes still inherit their parent’s enxironment — open-fife descnptors and so forth.
This capability, together with features s ch as pipes;xallows programs and tasks to run any other
program or task. For example, a prog ;hat rts a need not include a sort package; it can

invoke the system sort utility as a child Process.
ture.

n is called a software tcols architec-

A key consnderatlon of is arb"

scendents. For example, if a running program X has
dii"X is kit t%n SORT needs to be killed also, although the task
gint of SO j}c n fact, neither the shell nor X knows that SORT
s s to help &”i:.]Each process, together with all its descendents, is
‘-i:::;::})\_:; . «’ji

invoked SORT as a child
or shell that created X is
may have invoked a child
called a command subtree.

The use of a software ¢ iﬁtec % is a powerful programming technique and greatly
improves programmer productantTas Well as increases the functionality and compatibility of
resultant a[}p’l icabions programs., It is not, however, of great interest to the average end user, a

non-progratamer %{tware “and multitasking are important to the OEM and the ISV, and

indirectly bené t the ehys ] /’



4. THREADS

MS-DOS 4.0 (and a future release of XENIX) will support a concept called multiple threads.
A thread is a stream of control executing a process. Currently, when a DOS or XENIX process
starts, it has only one thread — the program is being executed only in one spot with one CPU.
MS-DOS 4.0 uses a mechanism whereby additional threads of control can be created, and code in
several locations can be executed ‘‘simultaneously.”

A thread is not another process. If a process is running with two threads they are almost
identical: if one thread issues an OPEN system call and gets back handle #4, the other thread
can do a READ on handle #4 to read that data. The only thread-specific information maintained
are the register contents. Fga

-

Threads are intended to be ‘‘cheap” so that processes can tapialy_,’c'rei_te_ _and-evaporate

them. For example, a screen-interactive program might obey a command and then dreate a
thread to do the screen update while the original thread looks for{ more commands. “If3a new

command arrives, the update thread could be terminated or the new mmiand could be processed
in parallel. Threads will sometimes be used for CPU-bound opferations becaise ;heyéixﬁ?lify the
design of a program. More often they will be used when{th{'_.f 1/0 invqﬁ'e_d_;f -ij}ﬂows one
thread to continue computing while another is blocked on I/O Gn e

The operating system interface to threads is simple. A sy\stqu éhll _A\performed that makes
a new thread and stores the location of the new thread’stack. Aﬁblthéj’;s}stem call is available
to destroy new threads. = e

£

=




5. MEMORY MANAGEMENT

5.1. New Features
The Microsoft memory manager provides:
@ Automatic sharing of pure code segments.
° Maximum flexibility to relocate on a segment basis.

° Swappable segments. Swapping segments that belong solely to idle tasks is not sufficient.
Segment sharing and task behavior may force swapping of some of an active task’s seg-
ments, but will continue running that task until it references a swapped segment.

° Dynamic linking. This provides programs with access to other spft’vlvAare';s‘ervices that are
not necessarily built into the operating system. Links to the !,ibra:'r:jerarle«m;sd‘e‘_gbrough
names. R g

° Transparency and compatibility. Existing high-level language&dﬁgli“c’a@ion; zlfi?'c};i}ajmuch

transparency and compatibility as possible passed on to them au ‘M.tl_n/oﬁgii’g'ecom-
pilation with new compilers. i Pl
< " - / _',»"':/
N 2L N A

6.1.1. Movable Memory Segments

MS-DOS 4.0 will allow allocated memory segmentdto be sp &_a} ing movable or fixed
in memory. Movable memory segments permit @e\u}ﬂ ive membry:__ﬁfxlization because free
memory blocks can be coalesced more readily. n%n ! xed segment, it is given
a segment number as with earlier versions of MS-DQS. a Wed ts a movable segment,
it is returned a handle. A subroutine is called to péference e:i;ggi__n_en‘t,”‘l‘he subroutine converts
the handle into a long pointer and the segmentNs temporarily~madé fixed. When the program
has completed the specific access, it calls’another 8

ments may be swapped out; in this 3 ﬁe
swapped in first. ~

outine to unlock the segment. Movable seg-
" subroutine causes the segment to be

agged “‘discardable}j
F- cases a speci

Finally, segments may be fi
such segments will be discar
subroutine to indicate that

e system runs short of {ree memory,
code is returned from the “lock down”

5.1.2. Shareable Code \; x
New programs will ba 3 £ o
transparent to the program; «ufst;z;i&of the program will have an independent data segment

that the system will maintain Tor- the benefit of the program. All pure code segments are
automaticzyrs' sitared; they need, not be movable.

L ~
e e
5.1.3. Dynamio Linking 7 b

New programs will alsg’be able to dynamically link to entry points in other segments. This
will lead to additionalg}faring of code. For example, the run-time libraries of higher-level
languages may be implemented as separate shared segments. This will reduce the size of execut-
able files and reduce total memory usage. As an added benefit, programs will not have to be
relinked to take advantage of revised versions of libraries. It will also make a richer environment

available to the programmer. The built-in commands of COMMAND.COM will be available as
subroutines.

2
o L ; s
‘_l}_a:ér%y‘]tlple instances of their pure code segments. This is



5.1.4. Demand Loading

As an option, the segments that make up a program need not be loaded when the program
is loaded. Instead, they may be loaded only when they are referenced. This is intended for infre-
quently used subroutines like error handlers. The set of routines that are .pre-loaded may be
specified by each program or library. The “on demand’’ loading feature may also be turned off in
situations where it is inappropriate, such as floppy disk machines that require a lot of disk switch-
ing.

5.1.5. Swapping /"'“\\

To meet extraordinary memory demands, MS-DOS 4.0 may swap segments to disk, When a
segment is swapped out, programs that use the segment will be penmlted Ao run until they need
to refer to the swapped-out segment. They will then trap to the systém. tbat’wxll arrange] r the
segment to be reloaded. This virtual segment capability is transparen toﬂ;e program.} n.) -

.Q‘

5.2. New System Calls

See the product specification entitled AMicrosoft
MEMORY MANAGEMENT for a detailed list.

1)  Use small or medium memory models.
be most useful with small or medium (sma
pointers should be avoide

2) Use the pre-defined/ subfoutine gk 2zh conventions. The memory management system

assumes that certain sul -conventions are followed so that it may determine
the state of the stack fra ;

3) BP must always point ¢ Ta.va‘liditst:r.ck frame. For the same reason as in the previous point,

the valug\:ored in BP is constraimed.

1)

meh\m\usfy/p:;?,to be shared. Storing into variables using CS overrides is not

5) Far pointers must_ be Jereferenced via indirect pointers. When a program would normally
use a pointer, it must use a “memory handle.” The memory management system must be
called to turn the handle into an address and lock the segment against movement and swap-

ping. When the program is done using the memory, it must call the system to unlock the
memory.



1)

2)

3)

gl

The following programming conventions will allew for greater portability to the 286:

Avoid using segment registers as scratch registers. On the 286, segment\registers must con-
tain valid segment selectors.

Avoid segment arithmetic. In 286 protected mode, segment selectors may not necessarily be
created by computation using shifts and adds.

Do not write into code segments. In 286 protected mode, using CS ovgu'iieg to write into
memory is not permitted. s




-10-

6. CONCURRENCY SUPPORT

68.1. New System Calls

° FREEZE ‘
Used to stop the execution of a program for a time, at which point it can be restarted.
° RESUME

Used to restart a frozen task.

68.2. New Capabilities

MS-DOS 4.0’s multitasking capability is important to both the OEM*{an,d the ISV, and its
concurrency features are key to the end user. ‘‘Concurrency’ refers to t;ré ability to pefform any
one of several things at one time, together with the ability to switch’ ba.c&}nd forth bg’égeen
them at will. A human being is a prime example of a concurrent proci sor, He cag—:ch\pgl‘i;one
thicg at one time, but he can switch back and forth between several ongoi Zt:gkr ,r»_:;.'

MS-DOS 4.0 includes a utility named *Session Manager}‘.’_/' .manages sevé_}a]_/ile s of
activity. Session Manager gives the user the illusion of having-several inde denﬁ essors.
For example, the user might be running a copy of Multiplan v?ﬁggl;gh_e__‘ one rings. The user
could activate Session Manager by striking a special ke then use §és_‘simjf_v Ainager’s menu inter-
face to create a new screen group. This screen group appéars to be a ;’rht;lj:‘!éw PC. The screen
now would display a COMMAND.COM prompt or%@faj’:s '

Visual/Shel}l menu). The user
would now enter his calendar program. ey 4
When done reviewing his calendar, he cgtild 5{g,gle back<to.

—
Q; s Mulgilan screen with a cou-
ple of keystrokes. The screen contents and-fnode would be restored-iast as they were when Mul-

tiplan was last running. He would not nee exit -t

running and switch away from it just _hg” hatk ear
specifically: i

° There can be as many dzi?n_t “yirtual machines :' “‘screen groups” as memory allows,

calendar program first; he could leave it

although these may be s gp{{l 15k when inactive (as in the previous example when the
tasks are suspended for _gy?go“_ 41"393:;_) n systems where this would be realistic (hard disk
or network connection). _§¥ssion 3 %night enforce an upper limit of 16.
=0 S . . .
° This facility does not fire cooperalioh-on the part of the application. Control is taken

fiom the application; uyh__i?gbplication cannot detect any change as the screen
is fully restored. — Vursf

Many older programs perfo Eﬂas"_k:g}{at are hostile to the multitasking environment. For
example, som ite directly into physical screen memory, without going through the DOS
(including thé ANSKdriver) or ware. Although MS-DOS 4.0 is capable of continuing to run
applications when thel “::;e{p;”ére not being displayed on the console, such ill-behaved pro-
grams must be FROZEN at they will not write to screen memory when some other program

#

is using it. In genéral, when Session Manager switches the physical screen to another image,

there are three possibilRLe\s for'programs that were using the old screen image:

1) FREEZE the progra}ﬁf RESUME it only when its screen is the active one. This is the
default action and must be taken for older, ill-behaved programs.

2) Let the program continue to run, but suspend it when it tries to do any console output.
This mode prevents the scrolling of information that will never be seen by the user.

3) Let the program continue to run, even if it writes to the screen (through a software inter-
face).

Session Manager decides which of these alternatives is appropriate for each program. Ses-
sion Manager determines program behavior via a series of defined behavior bits. These are dis-
cussed in more dctail in Section 12.4.



-11-

7. SCHEDULER

7.1. New System Calls

) SLEEP
Used to delay the execution of a task for a specified amount of time.
° PRIORITY =

Gets/sets a task’s priority.

7.2. New Features

The two overriding principles applied to the MS-DOS 4.0 schedulin;,{lgoritﬁn were to keep
it simple and to minimize perceived performance degradation (from th/e-’standpoiqt%hat\ag appli-
cation no longer receives 100% of the CPU resource). Since there aren’t’ multiple “usérg! who
will notice inconsistencies in the frequency and duration of time slicé ;'i_tji,possil‘;lé—&pfﬁfe the
foreground screen group a disproportionately high percentage of the _":gpufce to-migimize
the user’s belief that other tasks are interfering with his primary task. P AT T

The scheduler essentially runs the highest priority task\ti‘\xi:-tgl}_e_‘__ queue,”. K—m%v& the
run queue by being blocked on I/O or voluntarily going to shegp.. W a t}s}‘ﬁaves the run
queue (which can only happen when it is actively rymping or through-User intervention), the
highest priority task (that is runnable) is invoked. ,Mon to< this“ts when a scan of all
runnable tasks is made at a certain interval, curgently theeeseconds. Anyfask that has not run
during that interval will then be run for one slice, to, thewe xclugion. of Wighey priority tasks (except
when the active task has declared itself }'\m/e{-cr' ical). "Fhis*$2¢bniqye’ will help to minimize
lockout in this otherwise simple scheduling £nvir et

given task. A default constant will as§}ine tozal
The scheduler then adjusts for each of the*followin ¢events

o Member of the foreground screen group.

: e_§croen output (character or graphics) through a detect-
able software interf ceggo as tom “{rhige the jerkiness associated with time slicing during
screen output). it 5

g A N S . : :

The priorities 0 and E.‘;M@q\sguél;géanmg. Priority 0 is only assigned voluntarily by a
task to itself. This means tog Hg;;_'ge-_;ﬁ:ia_ otily when no other is available, excluding it from the
three-second scan. A print spooler might’run at this priority. Priority 255 is reserved for time-
critical task;/‘tba\t will run to the exclusion of all others, disabling the three-second scan. It is

anticipatedthat stch tasdlis}:‘?l‘n{n for very short periods of time. For example, a downloader

running in the backgisund might ran at this priority so that as it is receiving data at 9600 baud.
When its sector 125 filled, 1t cqp/be dumped to the disk before its ring buffer overflows. It will
continue to be intercupted as characters come in while this DOS request is taking place. Other
programs that might ruq at.this priority include a network server, real time process control, Ses-
sion Manager, and BASICY{while it is playing music).

The following examples illustrate a typical multitasking environment:

1)  Two tasks with different priorities. The higher priority task will always run, with the lower
priority task only running during I/O operations of the other. If there is any three second

period where the higher priority task was not blocked for 1/0, the lower pricrity task will
get a slice.

2) Two tasks of equal priority, one disk-intensive and one screen-intensive. This disk-intensive
application often will not use up its slice, but instead will “block” on 1/0. Its priority will
be boosted upon completion. The screen-oriented task will also have its priority boosted,
but not as much as the disk-intensive task, after every slice during which it did screen 1/O
that the DOS could detect. Consequently, if the disk-intensive application does mnot



«19=

complete its slice before being blocked, it will have higher priority and will run whenever
ready. (The screen-oriented application will still get most of the machine because the I/O
will take longer than a slice to complete.) If, however, the disk-intensive application uses up
most of its slices (in which case it is more CPU-intensive than disk-intensive), it will run
once every three seconds.

The scheduler manages the execution of all processes. It decides which tasks run, and for
how long. In general, a process runs until it has exhausted its time slice, or n must block on
some I/O operation, or it voluntarily surrenders the CPU.

If a task has to wait for scme event, the scheduler takes the task off the run queue until
that event happens, at which time the waiting tasks are placed back in the,rnn qu,e‘ue Tasks are
automatically scheduled to suspend and resume during I/O operations;, tasks can also_Lequest a
voluntary suspension for a specified interval of time. / AT

= s = -’x
No polling for events should be done. If some task is waiting t ra pa.:txcular.ﬂent,qt is
not placed in the run queue until the event happens. This reduces j}h&aﬂ of unfjhmg

tasks by avoiding checks to see if any of the waiting tasks are rp‘ﬁba\ble

A mechanism exists to specify time-critical tasks. Sucf\n taskinis lmme@&ely )A at the
earliest opportunity. It runs until it relinquishes control or goes\%o a.n wait. “In this way, a
bounded response time that depends only on schedulepaglock reso'hxtmn (atick) is provided for
tasks that have to respond to real time events. If ‘morésthan one\tlme-c_}lmcal task becomes
ready, then the second will not run until the first_com lgg'em;., he only)thidg that may interfere

with a time-critical task is an interrupt “YV%& 'ot_éjtliht.t_bm/'s ngt provided to service

hardware interrupts (these are handled by } bal tofomplement the device
drivers and allow task level processing to occur quickly in respotiseto a¢ritical ¢vent.

When a task issues an I/O requesty /the requesinis queued, the task is taken out of the run

queue, other tasks are run, the 1/O cofuplejés fthe 4 driver notifies the scheduler), and the
task is placed back in the run queue. 3 v

Several applications have t.imin
In this case, that task’s priori '



-13- i

8. INTERPROCESS COMMUNICATION

8.1. New System Calls

° PIPE
Used to create named or anonymous pipes.

® CREATMEM
Used to create a shared memory area.

e GETMEM
Used to get access to an existing shared memory area. e
7% s
e  RELEASEMEM R R
Used to release access to a shared memory area. /" e

b3
- s 2

’ >

|

Pl

o

b

s

8.2. New Features "';::r'_h P
MS-DOS 4.0 provides two forms of Interprocess Comm,uaj%tion ) pfpeyﬁnﬂ?harcd
memory. : ,é:-- & A ;,/
NI S S A

R
A pipe is a serial communications channel conpp’c\th{ two or\iti;nﬁ‘igfﬁr‘x)cesses. Just like its
physical namesake, the writer tasks put data into the pipe 2nd the reader tisks remove it. Pipe
I/O is done via the standard system Read/W Naﬂi}pg.pfv O is jhdistinguishable from nor-
mal file I/O. This is deliberate. It allows a task to'comm “nicitgiﬁje hAngeably with consoles,
disk files, and other tasks, including those oyér thy:etwork. T

8.2.1. Pipes \ -«p\

There are two subclasses of pipes, riamed pipsg and anonymous pipes. The distinction is in
how the pipes are established; once opﬁi k_are it

5 =
Anonymous pipes are created via the ystem dqll. The PIPE call returns both ends
of a pipe. No other task can also open that pipe sinse" ‘ no name, but any child tasks that

the current task creates will in -Winchever end of the\pipe the parent chooses.

This allows a task to rdn-a child fask and read /write data from or to the child. The parent
task typically arranges for/thepipe ¢ ‘ﬁg}gﬁ) be the STDIN and STDOUT channels so that the
child task is unaware tha it being in _,gg?.by some other task. In this manner any program
(such as SORT, for examp"@{;  be invok dg&ﬂdo work for any other program.

1
~
N

Named pipes are create ;@g C ,?gf_é’and Open system calls, and kave pathnames asso-

ciated witia them. All name f’_fﬁ_tb'p; S must start with the string:

\PIPE A T
This restrigtion s gnade to ens e compatibility with future enhancements to pipes. Since these
pipes have es, ¢ can b€ explicitly opened by other unrelated processes. Named pipes are

typically employed by Beryite ta;fs and their clients: the service task opens a pipe of a known
name and issues a.read. Clien/&-”tasks open the same name and write their requests on the pipe.
Arbitrarily sophisticht_e\d arg.hﬁtectures can be created: for example, the server task takes the
client “‘off channel” by specifying a new pipe name. The client and the server (or a child task
created by the server) could then communicate privately over the new pipe.

Either type of pipe exists orly while some process (or processes) have it open. The pipe is
deleted when all processes close their handles to the pipe, and the region of memory occupied by
the pipe is deallocated. Pipes are not buffered on disk.



-14-

8.2.2. Shared memory

MS-DOS 4.0 supports a shared memory facility. The CREATMEM system call allocates
a segment of memory of the requested length and records its name. Like named pipes, above,
shared memory names use the file system name space but are currently restricted to ‘names that
begin with:

\SHAREMEM\

This restriction is made to ensure compatibility with future enhancements to shared memory.
Once created, an area of shared memory can be accessed by other processes via the GETM.EM
system call. Shared memory is typically employed to allow two or more clogely cooperating
processes to share access to common tables 2nd buffers. Pipes and namcd/ pxpesshould be used if
the processes only wish to transfer stream data; on some systems pxpes jnay Mmm efficient
than shared memory.




- 15.-

9. SIGNALS

9.1. New System Calls

) SETSIGNAL
Controls the task’s sensitivity to a SIGNAL. Specifies an address to call when the signal is
delivered.

° SENDSIGNAL
Sends a signal to another task or an entire command subtree.

9.2. New Features Il = h

The signal mechanism allows a program to receive asynchroni;ns:,-é\iéngs - akind of
software interrupt. Programs use the SIGNAL system call to specify aBeryice adg!resg?f%r the
signal(s) in which they are interested. "

g SN Sivny
3 z y e

S T i
When a signal arrives at a process, the system examinessthe pr gnal table STl the
process has specified an action (either accept or ignore), the-system does as jrstructed” If no
explicit action has been specified or inherited from the pmenf;}hﬁ,@g__ it action is tak

QI
The following signals and default actions have Me{deﬁnedF\

RS ¥
SIGNAL Descripton = -3
SIGNAL Function % e ; v Default Action

SIGDIVZ Generated when program di\;ié}h? 0. T - :¥| Abort Program
SIGFPE Generated by floating poig,t/ exception. \23- ==+~ | Abort Program

SIGTERM | Sent when the process is'to ter,mhg&e immediately. Abort Program

SIGABT Sent when the procesgfq,« v i te immediately. This | Always Aborts Program
signal cannot be disabled,dr intercepted:

SIGINTR | Sent when the special INT key BWthe console. | Abort Pregram
This is normally CTRE<C.

SIGKB1 Sent when L/f&gﬁﬂé’zﬁ;%ﬁ&ey is typed at the console. Ignored

SIGKB2 | Sent whed tha-pecialN¢B2 Ry is typed at the console. Ignored

~.

SIGUSER1 | Sent by ';i%other pro&}}?sed for interprocess com- | Ignored
SN }' )

municatiQii =, =
SIGUSER2 | Sent by Qj;’-:@?gg_ p{&:feé‘sé' Used for interprocess com- | Ignored
munication, NS =Ltk 2P
NI e
Signa}s/f;}binto one of three categories:
1) Program F aulds. N
These signals, SR}D Z apJ SIGFPE, represent program errors.
2)  Keyboard Eveats ,1" N
These signals, SI\GIN’PR, SIGKBI1, aand SIGKB2 represent asynchronous keyboard
events. ad

3) IPCEvents
These signals, SIGTERM, SIGINTR, SIGUSERI1 and SIGUSER2 are Interprocess
Communication signals and are sent via SENDSIG from some other process.

This document groups the three classes of signals together because they are treated simi-
larly by the DOS. These classes will be treated separately in the AMS-DOS Programmer’s Refer-
ence Manual since the origins and uses of the three kinds of signals differ considerably.



-16 -

10. KEYBOARD INTERCEPTS

A keyboard intercept is a mechanism whereby a program can be asynchronously notified of a
keyboard event, such as a CTRL-C. Keyboard intercepts are handled somewhat differently in
MS-DOS 4.0 than they were in MS-DOS 2.0.

MS-DOS 2.0 defined only one keyboard intercept: CTRL-C. The device driver treated
CTRL-C as a normal character; if a non-raw READ attempted to read a CTRL-C character
from the queue, the DOS would call the INT 23H vector instead. Programs that hung up in
loops or that did not read from the console would not respond to a CTRL-C character.

Under MS-DOS 4.0, the keyboard device driver presents every incoming-character to the
DOS. The DOS maintains a flag indicating the status of the keyboard de&‘{ ice: cooked or rew. If
the device is in raw mode, all characters are treated as data. If the devxce is in cooked mode,
characters that match CHAR_INT, CHAR_KB1 or CHAR_KB2 (ea.éh wsetta’ﬁle via IOCTL)
generate SIGINTR, SIGKB1 and SIGKB2, respectively. < s~ LS

) T

In normal operation, the current command interpreter.(often ﬂej)a’ “shell’”.:ysually
COMMAND.COM) has enabled the SIGINTR signal. If Aer types CTRD-/ e shell
receives the SIGINTR signal and issues (via a system call)a SIGTERM to@e cupréntly run-
ning process. Actually, it issues a SIGTERM to the entire Esm;nan.. ubtree of the currently
running process, in case it also has created child proce & - 3

Processes can circumvent this normal sequen«\m—tht ¢ Ways. F rst).
be killed unexpectedly, perhaps because they n to\:& n. me lockeqd files, restore a data-
base, or whatever. In such a case the programnf inteprepts ﬁ\QSl%TE signal; when the signal
is received, the service code would do the % t'ifte -pr. ‘,o(ess Note that the com-

mand shell will not reprompt the user ur’i he processes in command subtree have ter-
minated. Sz T

The second way that programs ca ‘a:ﬁect : TR (i.e., CTRL-C) processing is to set the
keyboard device into raw mode. This is done bj\programs, like screen editors, that treat a

CTRL-C as a data character. The- am would res he keyboard to cooked mode before it
exits. : o

hey may not wish to

The third possibility /1s- &St‘fﬁ ‘ J, program is itself a shell. Examples of this might be
editors, Multiplan, etc. he;ﬂ programs gcyant to be alerted to a CTRL-C (or whatever charac-
ter they prefer) but don’ w‘m to be kil éar‘yecause of it. They would issue the SETSIGNAL
system call to intercept i ,,.au@matlcally suspends the parent shell's sensitivity to
SIGINTR, SIGKB1 an #n this new shell exits to its parent, the parent is
automatically resensitized to th 'sémgna 7as appropriate.

Note ;h\\exxstmg programs believe that i issuing a special ‘‘raw-mode” READ (subfunction

6) protect§ them’ ‘f(om b;i}ﬂ.@d by a CTRL-C. This will not be the case in MS-DOS 4.0; a

special behaxjor bit™ l\set that’running such programs automatically puts the console in raw
mode. s




w17 =

11. FILE SYSTEM

11.1. New System Calls

) LOCK ' .
Used to lock a range in a file. This prevents other tasks from reading or writing that range
until it is unlocked. A task may lock multiple segments within one or more files.

° UNLOCK
Releases a file LOCK.
o OPEN L~
Additional arguments to allow programs to restrict any read and/q,r/ﬁvrite access to the file
by other tasks. i i T
.'/ :1, .-"/ R ;:"-35
11.2. New Features Nl T

y T-elx

Since multiple processes may contend for files, MS-DOS 4.0 provi ‘:}tjvcditrolﬁx}s_)iccess
to entire files and/or selected fields within files. These acces Tights can be used“to control con-
current access to a file or totally exclude access to a file. Provisionsare made@i—l_&: ifig ranges

in a file. L __;7.\3\
Further, the Mode field of the Open system call H'ag been ex‘t;ej_dé{i;}y}allow the program to
restrict any further read and/or write access to ¢ fleX\This diﬂ‘ér‘sij.ftﬂn the range locking
described above because it affects the whole file §e am?ﬁ flect u/ﬂtil‘lfﬁe file is closed.

Programs presenting an unextended (“od sty ") m
patibiity mode. This mode allows one task/to
MS-DOS 2.0 mode. All other tasks are refused acds

/

These extensions to the file syste(call's-
£

.' @Q:_* en-i-' open the file in com-
n the file<as inamy _fmes as it wishes, in any
to a file opemin compatibility mode.

&

11.3. Networking

Networking will be supported 7y ¢ 0% much the same manner as it is under
MS-DOS 3.0, except that it)ﬁ_l/::'%:_".’ﬂ:- yantage of the multitasking capabilities. Specifically,
the server will become jus nﬁe?bi%pplication. The redirector will function identically
to its current state, althopighince it is ‘iﬁgg coupled with the specific MS-DOS version, a .new
version will be required. .T;Egﬁ‘gxisting tr :p:prt layer device driver should work, although the

ability to use DMA will bekorie-fauch %@onant in the multitasking environment.

1.4. i N =
11.4. Omitted Features N,

Micros, ﬂ\Qcognizes the need to extend the file system in a number of different areas. This

has been eliberately omitted Qm this release and is slated for a future release. Specifically
these capabilities include: Py
and,

° File system-protecti "[;ermissions.

) Increased performance ,o‘ﬁ’ large disks. The current file system was designed and optimized
for floppy disk dSviges’. Running such a file system on a 32 Meg hard disk is stretching it
beyond anything that was imagined when it was designed. Significant performance gains
are possible with a file system optimized for large non-removable devices.

® Installable file system. Similar to the needs of the large hard disk being different from those
of the floppy, there are other storage devices, such 2s laser disks, that might require a cus-
tomized filc system to maximize performance. This would allow a specific file system to be
instzlled for specific devices, much 2s a device driver is today. The new hard disk file sys-
tem mentioned above would be written to this installable interface.

° Networking. The network code would presumably be rewritten to the same installable file
system interface.



<18

Symbolic Links. Makes files over the network appear in the local name space. The file con-
tains the name of the synonym file.

Undelete. Currently the FAT entries and the first byte of the directory entry are destroyed
on file delete. These could instead be saved and dynamically expunged by the file system
when the disk fillod up. This would allow the user to undelete his files so long as they have
not been written over because the disk is full.

More information in the directory entry. Longer names, lowercase names, access and crea-
tion date/time, name of the application that created the file, revision number, etc.




=40

12. COMPATIBILITY ISSUES

12.1. Ill-Behaved Programs

Many existing application programs assume they are the sole program on the machine.
Programs that write directly into screen memory or play with the interrupt vectors, for example,
fall into this class. These programs are called sli-behsved—they will not run, as is, in a multitask-
ing environment.

Although they may be ill-behaved, they are also quite popular. MS-DOS 4.0 contains facili-
ties that provide special support for these programs to allow them to run unchanged. Not all
kinds of ill-behavior can be supported, though. The following sections desprifie tecoverable" ill-
behavior, the recovery techniques, and irrecoverable ill-behavior. * T

/ = >. -
/ s a7 i

12.2. Recoverable ll-Behavior e

c A

-

\ _vv‘!

o Direct Screen Manipulation. Many programs write directly to t e sfrgen }n’emory, c;rcum-
venting the DOS. These programs have the appropriate behavior it-set (see ,Sectloh 12.4)
so that they are frozen whenever their screen is not thef“;g w 2

private hardware or as a form of crossymod ords these vectors on a
per-process basis so that vectors set/up t ing within a task will work,
but vectors set up to allow interfupt ca.lh , to some other task (a terminate-and-stay-
resident routine, for example) wn{]/\fall, :

St <y
e  Interrupt Vector Manipulation. Soyl\n adju —’the_,m’ten;(pt vectors to control

Programs whose scr naged will run normally under MS-DOS 4.0; programs

that ‘‘get fancy” will Successfully Retries INT 24H errors, but may be
incorrect for tbe A oﬂ;ol; Ignorc pﬁc}:s because the application may not be expecting
ad: disalgled them.

) Polling. Some applicativy 5159‘1I the keyboard through the ROM (which is detectable by the
DOS) and others poll 1/0 ports directly (which is not detectable). Whenever the DOS
detec;Zb{Qi, it wnll/reélnqmsh the remainder of that task’s time slice. The task will be

placed back irthe run gfieds, Y
- N s

S 7
12.3. Non-Recoyerable Ill-p"ehavlor

e  System Penphera.l Mzmpulatxon Depending upon the degree and kind of manipulation,
these programs mzy “not work in a multitasking environment. For example, programs that
reprogram the video controller without going through a software interface must run to com-

pletion before a screen switch can take place, since the screen device driver will not know
what state the screen is in.

) Interrupt Vector Use. As discussed above, programs that use the INT instructions to com-
municate with private ‘‘terminate and stay resident” programs will fail.

° INT 24H. Programs will no longer receive INT 24H calls. Programs that require these
calls to do special error processing may fail.



-20- .

@ Memory Utilization. Programs that size memory themselves or otherwise ignore DCS
memory management in favor of self-kelp will fail.

° Files and I/O. Programs that write scratch files with fixed names will fail if a second copy
is run in the same directory.

° CTRL-C handling. Programs that make assumptions about the register content; and stack
format when the CTRL-C vector is taken will fail.

) Multiple invocations of certain existing applications may fail. This is due to some applica-
tions storing values in fixed locations or trying to open for output a file with a fixed name.

° Keyboard. Any application that steals the hardware keyboard interrupt. (e.g., IBM INT
9H) and replaces this service routine without later chaining to th;/rqutipe' it replaced will
disable screen switching. A -

Lol o
° Timer. The scheduler requires a timer interrupt (e.g., IBM IN’T_ €H or INTlCﬁf} Run-
< SN

o e~

ning programs that trap these and fail to chain can be fatal. S y i
S T i< .¥
12.4. Behavior Bits ‘;{\ et

The binary .EXE file header defines a series of behavior | its th
program. The DOS and Session Manager examine these values ¥o.provide the right amount of
compatibility support without wasting effort on well-béhayed progr‘n@gig:{‘_lgese bits include:

= N N, »\._"a

T N
) s

1 /—_ Ses
S¥¥ils M. define She BokFtor of the

() Program writes directly to screen memory.
) Program aflects interrupt vectors. /\

° Program intercepts the keyboard vect
) Program expects old ‘‘read raw keg ard”

A utility will be distributed thay’recogmizés
ing installation, the user can use this u iljty to
cations. The default value for the bits
of the utility is optional. New
lishers before distribution. 2

In general, maximal ﬁ_;ﬁ'eﬁ ‘g?@ams (no behavior bits set), will run. They will be

frozen in the background angd their tad f@ﬁph overhead will be larger than well-behaved pro-
grams, because the DOS q@‘ scan inte jg‘g vectors. Setting behavior bits can only improve

rect behavior bits on his existing appli-
t have no bits) is ill-behaved, so usc
correct behavior bits set by the pub-

12.5. Memory Utilization~- _’,7

Old p’r,o}r{ms cannot be made movable and/dr swappable since they do not conform to the
new memgfy mahn&eme:?ng ines. Non-movable segments (including all old applications) will

conti;uhs{sly proy:'de as much contiguous memory as possible for movable seg-
ments. It becomes incrz ngly ¥nportant for any old “‘terminate and stay resident” programs to
be locked at initiakization timeto minimize memory fragmentation.

S 3 4



-21-

13. INTERNALS

From the standpoint of most of the MS-DOS 4.0 kernel, there is only one major concarn.
Each task consists of a Per Task Data Area (PTDA) and a program segment. This design is
called multiple logical kernel activations. This technique (which is also used by XENY)
significantly decreases the complexity of the kerne! and helps to maintains compatibility with pre-
vious versions. For integrity and simplicity, the entire MS-DOS kernel is considered a critical
section of code that may mot be interrupted. This by itself would make for a mon-optimal
environment if only one task at a time could be active within the kernel. By exiting the critical
section down inside the device driver (which requires that all DOS data structures be appropri-
ately updated prior to calling the device driver), multiple tasks can be active within the kernel at
once if all but one are actually in the device drivers. The majority of any 1/0 operation is spent
in the device drivers, and the time from entering the kernel to reaching the-device HriVei:igxrela-
tively small, so this restriction is a small price to pay for the simplicity; of desigii. - ‘__\'3\4:':_‘:'

The program segment has the same format as any program upder MS:BOS 2.0 {100H
header plus actual program). The PTDA is the data area forthe DOS~ar cgn&an'fs_-'g!l task
specific information. This area is not available to the task, add ma pbe only m_aﬁi_p_til;&gl by the
DOS. Each task has a separate PTDA. Nk \ 5~

Communication between a task and MS-DOS is sti NNT-Z1H. Interrupt vectors
are now managed by the DOS through the SetVeetor™and GetVector-talls. A task is not
allowed to place vectors directly in the table because; séveral, tasks ma]y”w t to set vectors for

the same interrupt. To prevent such conflicts, Okliﬂgfjc‘ej@ _gi?ﬁmpts, dispatching to

the appropriate foreground process. Son

i to run in an interrunt-
driven environment. Polling is accomplished _by ing in to the scheduler clock th:rough the
TimerService call. In this way, checé:’gmsnn e-donéx{or a non-interrupt-driven event at every
scheduler tick. This facility is also available for vice dniyers; its use introduces overhead but
allows machines to use polling, without penalizing those other” machines that do not require it.

Support for a 8087 coprgeessor: Wil
boot time. This will guarantée-that=the s
ity to mark programs not ing:the 8

rocessor is installed in the machine at
state of the 8087 will be saved on task switches. A facil-
wjﬂ:%e provided to minimize overhead.

b



-22.

14. HARDWARE CONSIDERATIONS

The minimal system for supporting MS-DOS 4.0 is an 8086/88 machine (i.e., processor,
memory, video I/O, etc.) with a timer. The minimal realistic system should also have interrupt-
driven 1/O and DMA capability for the disk.

MS-DOS 4.0 is designed to fully support concurrent I/O. Concurrent 1/O refers to the abil-
ity to be working on several different I/O requests simultaneously. Although each process can
have only one outstanding I/O request at a time, several tasks may each have a pending request.

Concurrent IO is especially beneficial for disk devices. They can sort their pending requests
based upon their position on the disk, thus reducing seek time and Jncreasing total 1/0O
throughput. P e

i e

To take maximum advantage of this capability, the hardware ghbulg!"aﬂqw'fo:'ct_incurrent
I/O to all its devices. This includes having a rational interrupt scheme, Separate DMA:ﬁﬂnneh
for each device, concurrent disk seeks, and so forth. e = O

—

o T AT
All hardware interrupts are handled by the appropriate dexjce driver-It-is the Leépmfﬁbility
of that device driver to inform the DOS at interrupt time whem-an¥/O operatign’has.gp pleted.
SN 5
N - A




-923.

15. DEVICE DRIVERS

15.1. Multitasking Device Drivers

Although most existing MS-DOS 2.0 device drivers will run under MS-DOS 4.0, they will
slow system performance. For best results, all device drivers should be rewritten to use the
features provided in MS-DOS 4.0. These features include: :

° Blocked task. MS-DOS 4.0 will remove the task from the run queue when it is waiting for
an I/O operation to complete. Examples would be wciting for keyboax;d input and waiting
for a DMA disk operation to complete. e

) Overlapped I/O. When this type of disk operztion is taking place;’btbﬁtjﬁnnahl&&gsks will
be started so that the CPU may be kept busy. Since multiple task§ may be activé\within

the file system at once, these other tasks may even make disk re uests:” o =l
T | L
) Queued requests. Since multiple tasks may be active within e‘ifl}ef‘;system,_;tlg}eddevnce
driver may have multiple requests queued up. The de}ié;\d_{iver is free to’rp_ofdei.‘ hese in
the most efflicient manner. ‘ \'\&_;;; LN <l‘};’ 5
° Write behind. The device driver may also queue up wfitc}qux 3ts, Iettinﬁihe requesting
task continue processing. The only type of error‘that can Jccjg-‘r:_gg_‘ such a circumstance
is a device (INT 24H) error which may asynchf’éxiép_éli with respect to the

request. SR }
eques e -

16.2. Console Driver

The screen and keyboard portions the comgole device d iverwill be split into two drivers;
as these drivers get more complex, it bé omes mor2xdifficult to replace one of the screen or key-
board independently of the other. 4=

15.3. Asynchronous Driver

The current polled asy}x‘bfofn‘g‘ui-c munications interface on the IBM PC is inadequate for
a multitasking environment. Specifically ~asynchronous interrupts have the potential to come in
i ible to-talinquish the remainder of the time slice upon detec-
ard, and it may be impossible to time slice at all

S =~
VA

o 03::}#_ >

_J:?"igx ; -i@rupbdriven mode. It will pass characters to a ring
buffer established by the ca “'.'i_bp@j&ﬁ_ég ieh. All communications applications, including BASIC,
should be rew.l%t:en to use this interface. A compatible driver could be written for MS-DOS 2.0
so that the;sé ne Qplications g:ld contiuue to run on older versions of the DOS.
15.4. Large %ﬂh ._\\ / /;

MS-DOS 3.D\was exten,(}é'd to include 16-bit FAT entries which helped to reduce wasted
space on large disks.‘\U\sin;/lﬁ-bit sector numbers limits expansion beyond 32 megabytes without
Increasing the sector size~"32-bit sector numbers will be added to facilitate larger hard disks. See
section 11.4, “‘Omitted Features,” in this specification.



-24 -

15.56. Firmware

Many aspects of the IBM PC firmware (ROM BIOS) are inadequate for a multitasking
environment. The most glaring deficiency lies in the lack of a jump out of the ROM disk code
while DMA is taking place (label WAIT_INT). Another problem is the non-reentrant nature of
this disk code which precludes queuing of multiple requests at one time over different DMA chan-
nels (a floppy and hard disk request going on at the same time for instance).

Other problems include the ROM loop for control NumLock (label K40) and video
firmware’s assumption that the logical screen is in fact the physical screen (label M3). Other
problems such as the INT 16H ROM loop (label K1) are easily circumveatable at the device
driver level. _ )

Some of these problems were rectified on the PC AT through the INT ;511' Wait and Post
capability. e e




-925-

16. UTILITIES

16.1. COMMAND.COM

COMMAND.COM will be made sharable and swappable. In addition, many of its com-
mands such as COPY will be made accessible to applications through the dynamic linking facil-
ity.

Both functions of the resident portion of COMMAND are subsumed by other parts of the
operating system and hence the resident portion is no longer needed. INT 24H errors are han-
dled by Session Manager and the reloading of the trarsient code is handle}i,by'th_c DOS swapping
fa.cility. ’/_ '_:

Batch processing will be enhanced to allow recursive batch pl;éces,sﬁ:fl;nd( 're'dii"g_g{:ion of

/

I/O on an entire batch file. ek =l LR
Eﬁ- 2 e
10.2. Session Manager v g o o "-53

The Session Manager manages multiple processes rungi:n:;; . different sc;rée‘n's»; ¥ uses ini-
tialization file SM.INI. This program includes the hard error catchep
not run with the Session Manager. e

SRS R
Normally Session Manager will invoke a copy‘,plf'. comniaﬁ&m‘t@r\greter for each screen
group. It could, however, invoke applications direcﬂ{'_i{_ 0. 1y tructed.} Few

-'.»‘__' o <,
See the specification Microsoft Mul%v/k}% Fl&«l)ﬂ&‘kr_ fql:._jﬂ;cciﬁca!ian SESSION

T a

MANAGER for details. :

16.3. Other Utllities ya
KILL EXE < +

>

-~

Intercepts hard errory/ @rﬁ b ,y; requests user action. This should always be run in

the background for now. ng{ above co ymany line should be placed in AUTOEXEC.BAT if SM
is not used. Bis =g

BBSET.EXE >
BBSET sets or clears

.»TS‘-\ ‘ _:::.::4 i
e "fbf@i_tgi;;’?an .EXE file header. MS-DOS uses the bekavior bits
smpatibility support needed to run the application.

wrikS\in\t.o th mi;;BSS and max-BSS fields of the executable header. These fields

paragrapbs and <€ontrol the initial memory allocation of the program. To avoid
excessive use of memory, all eyécutable programs should be run through EXEFIX. By default, C
programs will relea.se‘*:Qemo;y' allocated to them in excess of 64K and use the remainder for their
stack and allocatable (viajmalloc) memory. The program will also convert .COM files to .EXE
files. This will allow them to be BBSET and have their memory allocation adjusted.

PRINT.EXE

The print spooler will be redone to be just another application. It will relinquish its schedul-
ing to the DOS and applications, -




