Microsoft, _

Multitasking MS-DOS
Product

Specification ey

] *“ s ~-"3X
i _~ oy A
s s

S - e
S Rats

/\ pr e PR T
A
A\
a1
o

w o u
/ / e

This document describes: ﬁ;@é@vailable to MS-DOS 4.0 device drivers and the
requirements they must meet: It assumes that the reader is familiar with the opera-
tion of‘device drivers under MS-DOS 2.0.

&

. / <
N
\. E :

3
7
L

“’
\ =
v

1. INTRODUCTION

This document discusses the MS-DOS 4.0 device driver architecture, followed by a summary
of the new MS-DOS service routines and the changes in the device header and request packet for-
mats. Details of these are then covered with particular attention to the changes in the console
driver (CON) and block device drivers.

This document is one of a series of related documents. They are:

Microsoft Multitasking MS-DOS Product Specification OVERVIEW
Microsoft Multitasking MS-DOS Product Specification DEVICE DRIVERS
Microsoft Multitasking MS-DOS Product Specification SYSTEM CALLS
286 and 8086 Compatibility JEsrag
Microsoft Multitasking MS-DOS Product Specification INTRODUCTION '»"‘
Microsoft Multitasking MS-DOS Product Specification MEMORY,&[ANA G'EMENT\ -
Microsoft Multitasking MS-DOS Product Specification DYNAMIC LlﬁK[ﬁG . ‘
Microsoft Multitasking MS-DOS Product Specification SESSION E@Aﬁ@k i
h y A

W e
Nlaps by

2. OVERVIEW b \ e

Existing MS-DOS 2.0 device drivers are typicalb\synchrdﬁai;'sf.'_ih_ \pon-interrupt-driven.
Since MS-DOS 2.0 is a single-task operating system\.ﬂ;is;p‘resents no p[b@_eij;. The program can-
not proceed until the I/O is done, so it is accept& r»;glg‘e\g}grice driyer £y hold the CPU until

the I/O is complete. SN o
MS-DOS 4.0, on the other hand, is ::At_ﬂking c}iamt . It is important that
device drivers be interrupt-driven and written im such a fashion- they surrender the CPU

while they are awaiting device completion. The can then assign the CPU to other tasks

that are not waiting on 1/O. Q Fd

Although interrupt-driven device d;{vers are irable for performance reasons, pol-

ling device drivers are still usable. MS-DOS 2.0 device.drjfers are compatible with MS-DOS 4.0
under the following conditions; S

~ & =

=Y o
[=7

1) If they have hardwai'e_ inferrupt h\t —{ezsj the handlers do not enable interrupts; that is, no
nested interrupts can be&Randled in s

i MS-DOS 2.0 device driver.
2) They are not the C ‘-_“f;td\b?i«gs cil‘iy;i“r;‘jﬁxisting MS-DOS 2.0 CON drivers cannot be used

Ry

because they do not su Q:_ 3 the: -stz_riegﬁ?imagé" facility, described in Section 9.2.

Non-interrupt device drivéﬁiﬁl}%au as they did under MS-DOS 2.0 but will slow sys-
tem performancte, For best results, all device drivers should be rewritten to use the features pro-
vided in M3-DOS ™.

o

As
\\
~. j/"
3. NEW FEAT S o

There are three ﬁnhjgn—'gxeas of change for MS-DOS 4.0 device drivers:

1) A new device driver architecture is defined. The new architecture supports multiple (paral-
lel) I/O requests and interrupt-driven non-polled operation. Since many different tasks may
be running simultaneously, several of them might make an I/O request at the same time.
The MS-DOS 4.0 device driver architecture supports a queuing mechanism that allows the

device driver to work on more than one request at one time, and to choose the request it
will service next from the list of outstanding requests.

S

The interrupt-driven architecture allows the device driver to surrender the CPU while it is
waiting on an I/O operation, and regain it later when the operation completes.

2) The MS-DOS 2.0 CON driver has been split into to parts: Keyboard Input and Console
Output. Both the input and output drivers support the interrupt-driven architecture
described above. Both have some additional changes for MS-DOS 4.0.

The Console Output driver is changed in two areas. It must take on a few duties previously
handled by the DOS, such as tab expansion. It must also support 2 “multi-screen”’ capabil-
ity. This means the ability to save the contents of the screen into a DOS-supplied RAM
buffer, followed by the restoration of some previously saved screen image from another
RAM buffer. '

i .

3) Much of the work described here is logically a function of the device driver but.is not dev-
ice dependent. MS-DOS 4.0 provides a package of routines to do the majority of this new
work. If these routines are properly employed, MS-DOS 4.0 aeviééft!iivers _a(e:jiégmore
complex to create than MS-DOS 2.0 drivers. o R e

e
Ry o ';,

e
4. NEW DRIVER ARCHITECTURE o N

As described in the previous section, the MS-DOS 4.0 devi\c’éfd;'iifeiffa_(c!xitecture is designed
to support the queuing of multiple 1/O requests to be serviced in the ~i1iq'sj.4§¥icient order. A disk
device driver, for example, can queue several read operatios and use ‘5drﬁ_e';type of algorithm to
minimize the traveling of the heads across the,d‘i&k (‘I—‘\Hé_,jD;OSx.@aﬂgei;?lable an implementa-

tion of just such an algorithm.) MS-DOS 4.0 ri\zﬂ shou'l*c[.j@t‘sfi_Q»DO Ss5upplied routines called
ProcBlock and ProcRun so that the CP{¥can reassigne:l\iy@y is in progress.

MS-DOS 4.0 device drivers are callad from the DOS with an I/O packet that describes the

requested 1/O operation. They may refurn)
will take care of suspending any tasks that’need

Old-style device drivers will likely poll the devive waj ing for it to complete its task; this is
acceptable, but seriously restriets1f
driver wait loop—it cannot be given r tasks that are ready to run. Simulating interrupt-
driven operations for non-iﬂtéf;‘hﬁ)\ riveén devices will be described later in this document.

{ -)
4.1. I/O Handling {333]

.?}‘:.:\A /3 T:‘;J
There are two basic \methods, for Kandfing interrupt-driven block device 1/0. In the pre-
ferred method, the DOS callsifle-device driver strategy entry point with the address of the I/0
request packet. The Strategy routine~thecks the validity of the I/O request. If the request is
valid, the /Str“a‘tg‘gy routine places the request on a work queue for this device, using the DOS
PushRequest or™§ortRequ }x!unctions. These DOS functions allow the I/O request to be

placed on th work_tkau\e ig/either"a first-in, first-out (FIFO) or sorted order.

If the deN éur;ently/it{le, the Strategy routine starts up the device, usually by calling
a Start routine in the device driver. The Strategy routine then returns to the DOS with the
1/0O request marked incamplete (i.e., the STATUS done bit is reset). The DOS puts the process
to sleep until the I/O request has been completed.

-

When the device interrupt occurs, the interrupt handler must set the return status in the
request packet and call the DOS DoneRequest routine that marks the request as complete
(STATUS done bit set) and wakes up the waiting process. The device handler gets the next 1/0

request using the DOS PullRequest function. If there is an 1/O request, the interrupt handler
starts the request and exits the interrupt handler.

An alternate method allows the process to remain under control of the device driver until
the 1/O request has been completed. This is done by calling the DOS ProcBlock furction to put
the process to sleep, instead of returning an incomplete status from the Stratezy routine. The

=4

interrupt handler then calls the DOS ProcRun function to wake up the process instead of calling
the DOS DoneRequest function. The process may then set the return status in the request
packet, set the STATUS done bit, and stari the next request prior to returning from the Stra-
tegy routine.

The easiest way to understand this device driver architecture is to envision two independent
and parallel processes: the Strategy routine and the Interrupt routine. The Strategy routine
validales requests, puts them on the work queue, and waits for them to eventually complete. The
Interrupt routine examines the results of the operation, handles error retries, and indicates that
the request is done.

Note that Strategy initiates the 1/O only if the device had been inactive; if the device is
working on some previous request, the Interrupt routine will issue this new request when it
reaches the head of the work queue. The Strategy code which checks for active 1/O to consider
calling Start must lockout interrupts to avoid races with Interrupt. 5

4.2. Handling Multiple I/O Requests oo oL ey

To this point, this discussion of the device driver architecture has been from the viewpoint
of a single 1/O request. There will actually be multiple activati (or instanees) of the Strategy
routine, one for each request on the work queue. If process X calls\the DOS to do some 70, the
DOS will in turn (running as process X) call the driver's Stra‘te‘g;it_qiﬁu\e. When Steategy calls
ProcBlock, it is the process X that is being put to sleep. When process X calls ProcBlock, the
CPU might be assigned to process Y which could, in turp, issue an }/O_T\Q_‘quest and end up in
that same Strategy routine, also calling ProcBlock‘.\‘.:I_n thig case, thé;e"hfgtwo instances of the
Strategy routine active. C \‘{A: =<7

S G =
When an I/O operation is complete, rrupt a gmﬁlcgﬂ? wakes up the appropriate
instance by supplying the request block addfess 3€ an a.rgun? t:to PpocRun. Service need not
be on a FIFO basis, because Strategy may choose 0 50Tt requests.

The Strategy routine may asﬁle, -WH]| not be preempted by other task-time
instances, but it must protect itself againgt”its owq Inte pt routine. It should clear the inter-
rupt flag when checking if the device is active and W n exa‘hining the device queue. The Inter-

rupt routine will only be preempted-| i iqpity interrupts, and only if it re-enables
interrupts. :

The mechanism for qxe essjug requests is illustrated in the figure on the follow-
ing page. '

e P

MS-DOS 4.0 Driver Model

Strategy

(Called by the DOS)

Start

(Called by Strategy and Inter-
rupt serviee routines)

Interrupt Service

(Entered by hardware interrupt)

Called by the DOS with
request.

Verify
queue.

request and put on

If I/O is not already active call

Start. ! T < N "3\:
W s S o
L e e
Issue first request on q‘\‘u{to Bt o RS
device. R Bl
Return to caller. Nl \)\
Sy SEA
Return to MS-DOS. o Ny e)
- ' ,B’(évlce interrupts:

AT

—J

ferie :
T.Iss/'qg ﬁst request on queue to

o5] #zlgy:'(é ;

Return to caller.

e Analyze device status.
If error then call Start to retry
or set error flag.

Remove request from queue.

Issue DoneRequest on request
header.

Call Start to issue next request,
if any.

IRET

Note that the vertical axis represents time and that time increases from top to bottom of the

figure.

§. MS-DOS SUPPLIED SERVICES

As discussed previously, many of the functions of an MS-DOS 4.0 device driver are related
to its interface with the DOS rather than the device. It is sensible for the DOS to make available
much of this interface code for the use of the device drivers.

As in MS-DOS 2.0, each driver has an “initialize entry point” that is called during system
boot-up. When MS-DOS 4.0 calls the initialize entry point, it supplies a pointer to a subroutine
that provides these services. A parameter to the subroutine indicates which of the stbfunctions
described below is desired.

This section briefly describes the DOS routines and their purpose. This description is
intended to facilitate the reading of the remainder of this document.

- -~

e ProcBlock (ProcBlock-code, time-limit) e s =

A -

This routine is called to suspend execution of this instance of the device di'iyer._.’Thg DOS
will not immediately return from ProcBlock; it removes the current task from .thi run
queue and starts executing some other task. The ProcBlock-code-is an arbitrary -32-bit
value, but conventionally a process calls ProeBlock on a pmtic\@}igws, such as the
address of a command block or buffer header. The procefs“ig reactivated and-ProcBlock
returns when ProcRun is called with the same Proc‘\B{égk_—,c‘a_s{ebor when xl_:e* sme-limit
expires. ProcBlock sets the condition codes to indicate a normahcall of ProtRun or an
expiration of ProcRun. A time-limit value of 0 means to calfProcﬁ’k\xk indefinitely until
awakened. Procblock can only be called by tla,emime portion: of _a;device driver.
A ik e
e ProcRun (ProcBlock-code) \ = T s
This is the companion routine to Pro locy/When c v_avgaf;ns ALL processes that
were blocked for this particular ProcBlock-c €asy for the Interrupt rou-
tine to know what code to issue to waken- those waiting for a particular request—it just
wakes every process calling Proe qck"on at fequest block.
ProcRun returns immediately to i:s caller;
next available opportuprity.

¢~awaRened process(es) will be run at the
rocRun is often calted 4t interrupt-time.

© DoneRequest (requesf) >

.

This routine can be /séffffo mark 2 _fﬂf;}st block as DONE and to perform ProsRun for
any processes that m;'a‘y‘fggkcalling Prﬁ_gglock. The driver should set any error flags and
codes in the status wo dt'tiiinttc_aljzglb‘g routine.

° PushRegquest (queue-head,:v'egue

PushR’équ t adds the current device request packet to the list of packets to be executed
by thexdevice™Nnterrup roﬁt‘ine. The device driver should add all incoming read/write
requests Kit;:}ugs list. ,The driver should then determine whether the interrupt-time

execution thread is activ;,fand if not, it should call the Start routine. Since the device
may be active at_this péint, the caller must have turned off interrupts before calling this

N

routine (otherwise a window exists in which the device finishes before the packet is put on
the list).

PullRequest (queue-head)

PullRequest pulls the next waiting packet address from the sclected device queue. If there
is no packet (such as when characters are typed on the keyboard before they are read), then
the zero flag is set on return.

Typically a device driver uses PushRequest/PullRequest to maintain a request queue for
each of its devices/units. An empty queue is just a 0:0 DWORD. Queue elements are
chained onto this pointer. The device driver must allocate and initialize the queue header
DWORD to 0 before using PushRequest.

SortRequest (queue-head, request)

This routine can be used by block (disk) device drivers to add a new request to their work
queue. This routine adds the request to the queue and sorts the rqquegt _By,- starting sector
number. Sorting reduces the length of head seeks and speeds disk throughput. _

‘ & - ¥ e

TN Ry
Conslnputkilter (input char) B o -
This routine is called by the keyboard interrupt handler to allow\t{lléiDQSftB scar the input
stream for special characters. It returns an indication of Wwhether the character é§5uld be

queued or discarded. See Section 9.1, “Keyboard Interfppt_s,_’_’ Qr more de\tails_. /

&
; S Serd =ty
Arranges to have a screen switch signal sent t&the}geen manager: “Screen-number is the
number of the screen to be switched to. See{ion.QMKeyybara-interrupts," for more
. 7 4 S -
details. / / R o ,!"
GetDOSVar (VarNumber, Indez, Size) s

Returns the address or value of 41 interqal DQ
to be returned, Indez selects an it 4
of the item.

Signal_SM (screen-number) b

QueueFlush (char-qg@

The character queue;’s&fﬁfﬁx}e

/ \
Quz@raﬂ\(char— queue)*
The chxracter ak the ginming of the character queue structure is returned and deleted
from the queue. An erro; Andication is given if there are no characters available,

s

&
Nodes
2%

6. DEVICE HEADER

The format of an MS-DOS 4.0 device header remains essentially the same as in MS-DOS
2.0. The device header retains the two entry points defined in MS-DOS 2.0, but they are treated
as being identical and are called in sequence. This is maintained for backward compatibility. If
bit 5 (the MS-DOS 4.0 bit) of the attribute word is set, the second entry point should be set to
zero and will not be called.

MS-DOS 4.0 DEVICE HEADER

g

DAORD pointer to mext device
Set to -1 for loadable
device drivers

.
o -+ P e
t y
I -
4

|
|
I
i WORD device attributes

| Defines the

| characteristics of the
|

|

I

devices

.

WORD pointer to device |

strategy entry point {A\\\J

| WORD pointer to device *\ﬁf;i \
| interrupt entry point N -.T]:

o IS S

| 8-BYTE character q#:}g; name \1;:
| or for block device &
l the numberlgf “q1££¢)§x

7 e N e
/ Al
6.1. Aiiribute Word ; A

The attribute word changes sligEﬂy in N D_O_ 4.0. Two new bits are defined, and one bit
is no longer used. Unused bits are rescrved an hould be set to zero. Bii 11, (the OPN, or open
bit) indicates whether the device driver accepts I requed) functions in the range 13-15. These

are new functions that include Open and Close. Bit™5, (the MS-DOS 4.0 bit) indicates whether
the device driver accepts f
7.3.

/ ‘{':_,J 3 = Y
Bit 4, (the SPC, orf's.pﬂ“ial bit)\w\ag-]fggﬂ to indicate that a console output device supported
INT 29H as a shortcut q:_%:j:\nsole out ,ﬁﬁ;ﬁT hat attribute is no longer supported and console
drivers need not provide#t}}:_ saction. "lgﬁ'@lS«DOS 4.0, it is suggested tkat the comsole device
driver be divided into two'in: pénde Ez} s. One of these is completely responsible for outpus,
the other is completely responsilile formput. The halves of the console device driver are indi-
cated by the“SCR (screen) and KBD (keyboard) bits 1 and 0. In MS-DOS 2.0, these bits were

called STF{standard inpy\STO (standard output), respectively. The new names more accu-

rately describe thegyice dpiver Tunction.

e 7
¥
/ MS-DOS 4.0 ATTRIBUTE WORD
1514\\@-‘1211109 8 7 6 5 4 8 2 1 o
el v 1l e i///i///l///i///l///l i Ee el o
p Lot B R R il et e v e s |
IR |clMi/i Nl///l///l/’”.///!///l U hen sl L R | D

7. 1/0 REQUEST PACKET

The format of an MS-DOS 4.0 request packet remains the same as in MS-DOS 2.0, except
for changes to the request packet header, described below.

7.1. Request Header

There are two changes in the header of the request packet. First, four of the reserved bytes
in the header are now provided to the device driver so it can queue the requests internally. The
other four bytes remain reserved for future expansion.

MS-DOS 4.0 REQUEST HEADER

i
T

BYTE length of record
Length in bytes of this
Drive Request Structure

| BYTE uwnit code
The subunit the operation
is for (minor device)

(no meaning on character
devices)

o

i BYTE command code

| WORD Status

i 4 bytes reserved here for
the DOS.

device driver queue

| SR O

|
i DNORD link to be used by the
|

7.2. Status Word

The second change is in the status word. The DONE bit is used to signal if a request has
actually been completed. In MS-DOS 2.0 device drivers, the DONE bit was always set upon
return to the DOS from the device driver. In MS-DOS 4.0, the driver may return with the
DONE bit not set. The DONE bit is normally set by the interrupt service routine that then
awakens the corresponding process, using the DoneRequest helper.

MS-DOS 4.0 STATUS WORD

RESERVED

ot oY e s 4
T t t T T

-
L
L
L
|

-10-

7.3. New Commands

There are three new commands for device drivers. If a device driver does not support any
of these new functions it should return error code 3 (Uzknown Command). These new MS-DOS
functions are:

16 - Generic IOCTL Request

17 - Stop Device Request

18 - Restart Device Request

They are described in the following sections.

7.3.1. Generlc IOCTL Request

IOCTL Request ST
ES:BX — + o S s W
| 18—BYTE Static Request Header . Ji T
i BYTE Function Code o AT
+— e Pt
| BYTE Function Category ;‘A\ \-’f" -
LV\ORD (S1) contents ‘7-\’3_:_::‘_»:\ l_;/
S |

| WORD (DI) contents SN

~

)
by f
S

!

~ s

i

| DAORD pointer to data buffer < .-

+— e e .\’\ :
7 v\\'_”..':i;-i?\s i =
This function provides a generic, e t%e IOGZEL{(aéﬂity‘ at makes the existing
READ IOCTL and WRITE IOCTL Adevice’ driver fuiﬂfgns-‘ olete. The MS-DOS 2.0
IOCTL functions will remain to support-existing uses of the IOCTL system call (subfunctions 2,

3, 4 and 5), but all new IOCTL funct{is will_use Ek_kg{:ric MS-DOS 4.0 IOCTL facility.

The IOCTL facility provides devi g!speci controhfunctions. Many of these functions are
independent of a particular hardware interface car and it?associated device driver. For exam-
ple, the function that specifies lich_key-codes are to-generate asynchronous signals (keyboard
intercepts) is specific to conS)?le/‘};’;j@‘ [devices, but is not specific to a particular keyboard dev-
ice. , / _—j,.'_;v — &z ;/;

MS-DOS 4.0 includes migny of th ;device-specific but hardware-independent functions into
its own code. This simpl%&e‘fiiﬁ)e task of W'iﬁf_i}:g a device driver and ensures consistent behavior

-

; SR i :] :
among a diverse collectxonm}.;dé%{;gr}g;g}%’i‘he generic IOCTL function contains both a func-
tion code and a function Cﬁ’fi@}: he-DOS’examines the category field in order to intercept and

obey device commands that a }é’&'t{u;ﬁ}}j'éviced by the DOS code; all other command categories
are forwardegi*-t&the device driver for servicing.
/4

The c’omma‘nd\ catei;?/Md the DOS-provided hardware-independent device services are

N

discussed in“the following segfion. “One particular category, screen swifching, is discussed in some
length in Section 9, *‘The- onsole’ Device.”
7
7.3.2. Stop Devlcequugit
\Y-‘

Function 17 (Stop Output)

7 S

| 13 byte static request header

i
T

+—+

Function 17, Stop Output, is issued only to console screen drivers. It instructs them to
suspend any further output to the currently active console. Any write requests to that console
image should suspend (ProcBlock) uatil a Start Output (Function 18) is received.

- 1t

7.3.3. Restart Device Request

Function 18 (Start Output)

e al
\

| 13 byte static request header |

= il
T y

Function 18, Start Output, is issued only to console screen drivers. It instructs them to
resume output on the currently active console. See Section 7.3.2.

7.4. Changed Requests -
The following requests have changed slightly for MS-DOS 4.0:

Command Function =
Code ’
Init
Build BPB
Input (Read)
Non-Destructive Input No Wait
Input Status
Flush Input
Output (Write)
Output with Verify
Output Status

Output Flush '\ \‘:_:::f_ /
7.4.1. Init Request

The Init request now defines two mew in
the DOS device helper function. See ;ot‘ion
number field gives the first drive number that woul

DO

= O 00 =3
-0

/\ output-BPB array

< e s
_\\ LW\}drive number
e 7
£
¥ 4

ta
~ 7’

\\\f_f
7.4.2. Bulld BPB (BIOS Parameter Block)

The def:nition of the BIOS Parameter Block has changed to allow definition of devices with
more than 65535 sectors. The BPB will be considered to be in the old format if the word at
offset 8 of the BPB is non-zero. The request header is unchanged.

e T o | e

-12-

This is the format of the BPB:

Function 2 (Build BPB)

8 BYTE near JUMP to boot code

8 BYTES OEM name and version

WORD bytes per sector

BYTE sectors per allocation unit

WORD reserved sectors

BYTE number of FATs

WORD number of root dir entries

W v w

WORD number of sectors in logical
image if O, given at offset 1§
and 32 bits :

e
xo

A
s
s

T
S
+
2

T
-+

+—

| BYTE media descriptor

| WORD number of FAT sectors

| WORD sectors per track

.,/

Pt

v+4e+—+—+~—~*—¢—4—+—+—+—w—+

| WORD pumber of heads

| WORD number of hidden sectors /\| 'Ext;n_d?d«_ .;1‘
: BPB - .
| WORD bigh order number of yédex}/ |

sectors -

|
| DAORD pumber of loglcal‘i/uect,c~t\~ \1\
7 =

7.4.3. Read, Wrlite, Wri

For block devices:

) (Read,Write,Write with Verify)

fBYTE Static Request Header

\ /BYTE}medu descriptor
I IMbRD transfer address
\v.f"‘\r\ORD sector count

~_ -
B} ‘\ anction\i, 5

| DAORD starting sector number
| if not extended BPB, then ssn in
bigh word = 0

+—

$—— -3

<13

For character devices:

For screen, keyboard, and mouse drivers only, the previously unused field that gives the
starting sector number for block devices will now give the screen and sub-screen numbers. See
Section 9 for more details.

.

Functions 4,8,&£0 (Read,\Write,Write with Verify)

| 18-BYTE Static Request Header

s

| BYTE media descriptor

i DAWORD tramsfer address

ST

| WORD byte count

b~ — 4 —3 -4 -1

»/” g
| BYTE sacreen number RS D
' T 3 o ey
] = o7 .‘S
| BYTE sub-screen number Hi -~ ~Z3
+— i

«1d=

8. OPERATION

8.1. Internal Queues

Under MS-DOS 4.0 a device driver must either queue the request or carry it out until com-
pletion (like an MS-DOS 2.0 driver). Normally only read and write requests are queued; others
can be handled immediately.

A block (disk) device driver is free to act upon queued requests in any order. The decision
to choose queued requests in a particular order is left to the writer of the device driver. Serial
(character) device drivers should always handle requests in order, or the output will be mixed.

Once a request is issued to the device driver it is guaranteed that the location in memory of
the request packet will not change; thus the device driver may place the location of this request
in the link field of the previous request packet. By convention, the end of the st is marked by
setting the link field to zero (both segment and offset). =

For example, device driver FOO is a block device and uses a request qtietx';,,'lt-vw':a-.;li_x_;active
until recently called by the DOS for an 1/O operation. It has queued ithe Fequest agii started the
device. The request queue would look like this: e T e

-

Y \\:;'f,- =
N ?\\\ Rt

Lafhy

Queune Head Request Header

+— —_—

| —

Sl =

'\' N
0000:0000 | <— Link Ei{d SR
v e e e /

{

| |

| | ,

| | 2 I
: |

| |

| |

While still waiting for the 1/O interrupt,
queues the new package by placing the/ inf
in progress. It does not call its inter | Btart<routir

already in progress. The queue looks like this:

w requost in the link field of the package
because it notes that an operation is

l. 0000:0000 | <— Link
I

AN

S .
The queue cah be exthd_ed 4s more requests are issued. Note that the Strategy routine should
never place a neW request’at the head of a non-empty queue, since the first element in the queue

is the active one. lso notg_f{hat the Strategy enqueue code “critical section” must lock out
interrupts from the device..” :

v
Once the device driver is done with all pending requests, the HeadOfQueue will be zero,
indicating there are no more requests. 3

=15«

8.2. Request Completed Communication

Every time a device driver completes a request, either successfully or due to an error, it
must signal the DOS that the request is done.

The signaling of the DOS is accomplished by a long call that the device driver makes to the
DOS with the address of the request completed. The routine being called is the DOS device
helper function DoneRequest (see Section 5.1, “MS-DOS Supplied Services”).

The device driver returns the pointer to the request completed in ES:BX. Note that all the
pertinent fields in the request should have been updated before the device driver issues this long
call. 3

Once the DOS returns from the long call, the device driver can process a new request if any
are presently in its internal queue; otherwise, it just executes an IRET.

/,_

= -

8.3. Nesting Interrupts i

Due to many factors, including the amount of free stack space,"nes,fedtintérrupta'g}g not
allowed unless special actions are taken. Normally, interrupts are disabled during the-entire:time
the device driver interrupt service routine is active. This means that.a ‘high-priority -interrupt
will not interrupt a low-priority routine already being executed\ This mechanism-is faft and
efficient; most interrupt service routines are done quickly er:oq"glj‘t,ba the lockout of high€r prior-
ity interrupts is not a problem. s o

Occasionally an interrupt service routine may be slow enough- f:ii*fi;é'cngitate the re-enabling
of interrupts. The DOS provides a kernel service routine (‘ealled via an INT}32H instruction) to
facilitate this. The interrupt service routine dm,%“’g\?!in_ _ R

£% /
Al _'{::/ i 4
e Calls the DOS allow nested Interru helpé routiné“\i\!l:i_ijr/oll‘yﬁ’e makes sure the stack

is large enough and takes care of othef admi res

Py
Cof

trative chor

Note that the helper routine mus{:e ca registers (including SP) as they were at

the time the interrupt service routine #as

before calling the helper routine, it Tnust restore=all Tegisters to their original state before
making the call.

\

e Does an STI after the r/e__t@:: ﬁ_dﬁg' ;
have to be dismissed tg allow-other in!
° Does a normal IRET}IWE;{ done.

:~§}nte€f terrupt helper is called, any processes that were
annot actually run until some other interrupt handler does an
allow nested ‘ln&errupt call, a clock interrupt occurs, or the running process executes a system
call. For f, ’quenﬂmccurring i ’te;\rupts, the overhead of this call should be avoided if possible.
AN Vi

8.4. Initlalization . - !/ .

The format of“the INI’I",rfequest issued to initialize a device driver (at boot time) remains
the same, but the field used by the device driver to set the break address when it exits the initial-
ization routine now contalns on entry the FAR address of the DOS routine used to access the

DOS services. This address should be saved for later use by the device driver. (See Section 5.1,
“MS-DOS Supplied Services.”)

-16 -

8.5. Non-Interrupt-Driven Devices

For maximum I/O throughput, interrupt-driven devices should be used. In cases where
that is not possible, two techniques may be used to avoid polling in a CPU loop, and to allow the
CPU to run other tasks. Note however, that CPU polling will work. This allows MS-DOS 2.0
device drivers to work without modification. :

One technique that will work with devices which are part of the resident BIOS is to have
the Interrupt routine driven off of the system clock’s interrupt handler. MS-DOS 4.0 requires
an interrupt-driven clock handler in order to drive the scheduler. The clock interrupt handler
will become the interrupt-time component of the device driver. It will check the status of the
device and call DoneRequest and the device’s Start routine when appropriate.

Another technique is to have the Strategy routine call ProeBlock with a time-limit set.
When the time-limit expires, the device status could be checked and thg,jﬂterrupi routine called

when the device is ready. I)
R SRR
9. THE CONSOLE DEVICE o T e

The console device represents a special type of device. Whether thz'égh}'deﬁce 'ﬁiver is
installed or is part of the BIOS, it must conform to the new:MS-BQS 4.0 model. ItAs rare to
install a new console device driver in a system; the CON device driver is normally part of the
resident BIOS and is not replaced. However, in order tq allow theffééi}!e\ﬁt\BIOS screen and key-

=N

board drivers to be separately and independently oveérridden, the input-and; output halves of the
console device should be structured as separate dri\‘rbfi.'.‘ 'Th\e'\gis wil! r'eg\p’gnize the two drivers
by the SCR and KBD attribute bits in the deviceheadter, and'it, will'direét /O requests to the

»

proper driver (in some circumstances, an 10 I;}équest

" ‘be-sent toBoth drivers).

9.1. Keyboard Interrupts '

The DOS must look at incominyieybo‘ char atters to determine if they would send asyn-
chronous signals to some process. The \ﬁeyboard interrupthandler must pass these characters to
the DOS’s Key Intercept Handler before the characters are placed in any internal buffer of the

device driver. The routine should be>a t there is an outstanding input request
from some task. i

The character is p egfg;{‘th\e ~Intercept Handler by placing it in the AX register and
making a long call to the | €S Consln ';ﬁt‘ﬁlter helper function. If character is less than 16
bits, then the high bits should-be zero, withng/parity.

Upon return from th t@_,_thefc}fcter will still be in AX, and the zero flag will be set
if the character should not b 13,853.1_1]1;(;1}’9 ternal buffer of the device driver (i.e., zero set if the
character shoyld be ignored). IFreroiisFeset, then the character should be handled normally by

passing it t}y’a\ajting task or p{acing it in an internal buffer.

In ition to“passing ipdividual characters, the driver must specifically recognize the char-
acter (or charagter seqlence, or 9£’f1er special action) that indicates the special signal to the screen
manager. When this event is Jecognized, the Signal_SM helper function should be invoked. If
the keyboard handler distingishes several screen switch characters, the desired screen number
should be passed in AL\.\g(herwise, AL should be set to zero.

9.2. Multiple Screen Images

The “‘starting sector number” field had meaning only for block devices. Under MS-DOS 4.0
this field retains its meaning for block devices, but holds the keyboard or screen number (0 to
n-1), for input or output using the keyboard or screen devices. The number of screens (n) imple-
mented is determined by the driver. The system will never use more than eight different screens.
The following figure shows the format of the multiple screen image request.

-17 -

Multiple Screen Image Request

13 byte static request header

BYTE: Media descriptor (unused)

DWORD: Transfer address

WORD: Byte count

WORD: Screen Number

+—4—F—+—4+—+
+—d—3—4+—34—1

For output, the starting sector number field enables the screen driver to know on which
screen it should display this data. If the specified screen image is the currently selected screen,
then the device driver should do the output. If the screen image is not the currently selected
screen, then the device driver may update the “background screen” by writing into the memory
locations where the screen image has been saved. If the driver cannét d& so, then it shéﬁ{d call
the ProcBlock helper routine with a code that is unique to this driy er and-the specified ‘screen
image. The address of the associated Screen Information RBlock SIBjjs;iuggegtéd,_ajs the
ProcBlock-code. When a non-current screen image is selected foNdisplay, the driver should call

the ProcRun helper function with the same address that ﬁa&:pw the QoeB‘[oéi helper.
The awakened process can then continue its write to the screen.~. e e e

For input, the screen number field tells the keyboard driver jy-h__iéhf\“keyboard image” it
should use to read the data. Typically, a keyboard driyer maintain‘s_i(yvith the aid of the
QueueWrite and QueueRead helper functio a\‘igpar;g%queue Aor ;gﬁch keyboard image;
there is a corresponding keyboard image for g4ch reen-image. “Wifen a/key is struck, the key-
board interrupt service routine places th?{; er in the "\gﬁb'”_bgloﬁrging to the active key-
board, after having determined that the sharactes, should be queuved”” Read requests are satisfied
from the proper keyboard queue; if the queue is -emp
interrupt service routine adds more cérag!érs o the

ProcBlock with the address of the appropriate ke

Note that little extra code is required to handlexthesmultiple keyboard images because the
driver always reads until the fequest:isatisfied or it must call ProcBlock awaiting additional
keystrokes. Processes bel n‘gi‘:igio’_*‘ﬁ_‘eﬂé_‘_:.-current keyboard /screen group can run until the

the driver must call ProcBlock until the
eue. It is suggested that the driver call

type-ahead in their keybgardAmage's™{yp
buffer becomes exhausted; th&iprocesses QU
onre and another key is stiix_gE§k
The data that define "::ez:gbx_x_ Tt _ang state of a particular screen or keyboard image is
called a Screen Information Bfock {SIB) o1.% Keyboard Information Block (KIB). The data isin a
well-defined format local to the device-driver and is communicated to the system and knowledge-

able systerr)’brogta\ms via IOC’{L calls. The SIB format appears on the following page.

- 18-

BYTE: flags

for driver's use to indicate
such things as stop/start
state, blocking processes

-+~

4

WORD :

offset

of fsetval

in this SIB to start

o

of segment descriptors

C S

WORD: segcnt

number of segments below

o
y

+

WORD :

total

e
T

SIBlen G

length of thi

s SIB

1
T

| Driver-private information

| PR

Dw

DwW

DD

s

Seg Entry 0:

siseneeded

Sise needed for segment.

=0 if segment

memf lag
=0 if segment

pointer
valid iff memf

unused

in memory

lag =0

\
\
< mintaj‘i‘;-ev}h.

for e

Seg Entry 1

®
Seg Entry =-1

,‘\~

S

Y

y driver .7 .. .

| Driver-private information

T

—2 Screen Tafo

=H E0)

It is expected that t{ne:ajgver will Pl a'éh
scrcen image) in the segmcn:t:s ?Sza\e info ma
in one of the areas reserved di‘ﬂ'er. xlvh

elatively large, variable-length data (such as the
n about the screen may be placed in a segment or
information.

< 10:=

e
T

+

WORD: offsetval

offset im this KIB to start
of segment descriptors

WORD: segcnt

pumber of segments below

— -+

WORD: KIBlen

total length of this KIB

| Driver-private information |
Seg Entry 0: P
DN siseneeded < maintained by dtvivgr it

Sise needed for segment.
=0 if segment uwnused

DW memflag < maintained by \ ﬂ:—e
=0 if segment in memory

DD pointer <=mint&"_§u‘§'§_,b‘_ sy
valid iff memflag = 0 Pt

Seg Entry 1 AN

® ‘.\

° S
° \,ﬁ
Seg Entry n-1

<
Key-in Buffer /%&yplcslw [

Driver-private informnion

4 —-.r.__._.'.

required is relatwely small‘ agd; its 1mme‘ 'ate}vallabﬂlty is useful, n is suggested that the type-

ahead buffer be a dedicat d*?_é:t of the s c:gure In general, it is expected that KIB’s would
have no segments allocatedt: - } =

9.3. Screen Switching

The sc;eén\manager uses the generlc IOCTL facility described earlier to communicate

screen swit¢hing ¢smman “the device driver. One of two categories of IOCTL is used,
depending o whethe‘r\th:fz/rma’uon is exchanged with the screen or keyboard driver. The
e

categories and ¢ r
7
I0C_SsC = 3 ‘/" i Screen Control
IOSC_LS = \411 ; Locate SIB
IOSC_SS = 42 ; 8ave segment
IOSC_RS = 43 ; restore segment
IOSC_El = 44 i Fe-enable I/O
IOSC_IS = 45 ; initialige screen
IOC_KC = 4 ; Keyboard Control
IOKC_LK = 41 ; Locate KIB
ICKC_SS = 42 ; 8ave segment
IOKC_RS = 43 ; restore segment
IOKC_CK = 44 3 chnge keyboard images
IOKC_IK = 45 i initialize keyboard

A similar command sequence is issued to the screen and keyboard driver to effect a screen
switch. Below is the general sequence for a screen switch. A keyboard switch is similar excert
that the corresponding calls to IOCTL for keyboard contrcl are used.

10SC_LS locate old screen SIB
for each segment

10SC_SS 8ave screen image
I0SC_LS locste new screes SIB
if first time

10sC_1S Jill screen with blanks
else

for each segment

IOSC_RS restore screem image

IOSC_E1

L e
“w

From the point of view of the driver, I/O to the device may be suspended between the first
IOSC_LS (or IOKC_LK) and the IOSC_EI (or IOKC_CK) command:’ The" current, screen
number should be changed and the corresponding SIB (or KIB) should bé selected yﬁeh‘e'.‘v‘\gr an
IOSC_LS (IOKC_LK) or IOSC_IS (IOKC_IK) command is receiv\e‘d.'{'l‘_h'e, screen nuinder is
passed in the User SI field of the request packet. 2 C oy

P \/ S -y
A0 ; ¥
When an IOSC_LS (or IOKC_LK) command is recei_\;gt_hb\d:jver should initjdlize the
Sizeneeded field of each segment. When a save segment comin'gi:d:i; re gived,‘the-ﬂ iver should
save the data associated with the segment indexed by SI Similarly; ‘when a,restore segment com-
mand is received, the driver should restore the data assoctated-with the indexed segment.

el . ~ 9 “‘ - “

\\':\ *T‘\n\\ : ‘_ v 3

9.4. ROM Emulation /\ ‘:-':;‘i' N o
The console driver in MS-DOS 4.0 mz?/emu e ROMoutiires thag'handle keyboard input
and are conventionally called by applicatiptis inthe MS-DOS4:0. envifonment. (An example is
INT 16 on the IBM-PC and compatibles:] The condale driver must do this to allow the system to
run other tasks while one task is waitifig foj- keyboard\jnput and to properly direct the input in
the multi-screen environment. As a ct:%xq{:ence, he condqle driver should not use the interrupt
to get input characters to satisfy read requests,)

actual ROM routine to get characters.~
rupt if they are running in sy gmqm@lg)X, in response to an INT 21 request).

When a user process_/i'eej}fr}st?i:ﬁ:iﬁ racters via an emulated ROM routine, there is no

5 By

screen image number paséed,’;i'long with\tlfezzequest that would allow the driver to determine

from which KIB type-ahei‘;d_:@ger to get ;ﬁ;gihara.cters. The emulating routine should instead
use the GetDOSVar helpg ;{n‘gﬁj&nyﬁﬁe address of the variable ScrnloOk. This variable
will be non-zero when the ¢ fefn?ﬂy?g__x_gc_;{t;?g process is attached to the currently active screen.
If the variable is zero, the emu '&g routite should call ProcBlock on the process until the vari-
able becomes bop-zero. The address of the ScrnloOk variable should be used as the ProcBlock-
code; the ROS issma ProcRyn on this code when the currently active screen changes.

N

" e
L x

7

v

9.5. Otheris

o
To allow proper, installible versions of the console driver, the driver must honor de-
installation requests. Lilge initialization requests, these will be issued at the user level so that
INT 21 functions may called. The driver must restore all interrupt vectors it had set and

release any dynamic memory it may have allocated. It will return 2n indication of the memory
occupied by its code and data.

The subsequently loaded console device must take over all responsibilities of the overloaded

console driver, including keyboard filtering and buffering (if it is a keyboard driver), and the
management of the screen switch facility.

-921-

10. DEVICE HELP FUNCTION DETAILS

The DOS-supplied services listed in Section 5 are accessed by loading a function code into
DL and making a FAR call to the routine whose address was supplied at device initialization
time. The function codes are defined symbolically in the file devhlp.ine. The text of the
devhlp.ine file follows:

SUBTTL DevHlp - Definitions for device driver helper fumctions
; SCCSID = @(#)devhlp.inc 1.2 84/07/16
int_savregs EQU S2H ; interrupt routine which saves

; interrupt-time registers. Nothing except
; the Flags, CS and IP my be on the stack.

P

DevHIp_SchedClock EQU 0 ; Called each timer Lii:k Lo
DevHlp_DevDone EQU 1 ; Device 1/0O! complete . - 3_:;:},
DevHip_PullRequest EQU 2 ; Pall next Kequest lromQ\ -y
DevHlp_PullParticular EQU s ; Pall a lpec ficreqnést - 7
DevHIp_PushRequest EQU 4 ; Push request— - .y
DevHlp_ConslnputFilter EQU 5 ; Keyhoa intercept check .7
DevHIp_SortRequest EQU 6 3 Pu}rreqn in sorted opder
DevHIp_Signal _SM EQU 7 ; Sena'\ngn:‘l\&o scsdion-fanager
DevHlp_ProcBlock EQU 9 Block “on- t!enk
DevHIp_ProcRun EQU 10 ,’\Unblock pracessy
DevHlp_Queuelnit EQU 11 hlt/clear*ci;riqueue
DevHIp_QueuneWrite EQU 13 Pnl\; char in* the quene
DevHlp_QueueRead EQU 14 \ \ chlr}rom("the quene
DevHlp_GetDOSVar EQU RctnL;\pm erjto DOS variable

Character Queune atrnc ure

subroutine. The serfie fu s ¢ initialised before

; Queuelnit must be {klled fore>any other quece manipulation
i 0 Q
: calling Queunelnit.

CharQueune STRUC

Qsise ; Sise of queue in bytes

Qchrout ; Index of mext char out

Qcount » Count of characters in the quene
Qbase ; Queue buffer

CharQueue ENDS
SUBTTL

Calling conventions for eachH elper routines follow. In addition to the explicit eflects
noted unde;,’ea}h routine, the mterrupt flag may be set or cleared by some routines, and other

flags may affected by t yf Some routines require that the interrupt flag be off when they
are called.

10.1. Request Queue Maqagement Routines

;00 PnllRequesz — Pull request packet from linked list

: PullRequest pulls the next waiting packet addreu from the selected

; device queue. If there is no packet, then the zero flag is set on

; return.

; ENTRY DS:Sl Head of device list (should match PushRequest value).
: EXIT Zero Set if there is no request to fulfill.

ES:BX Pointer to device packet.

X PullParticular — Full particular request packet from list

PullParticular pulls the specified packet address from the selected
device queune. If the packet is not found, them the sero flag is set
on return.

~
ENTRY DS:SI Head of device list (should match PushRequest valae)
ES:BX Pointer to device packet.
EXIT Zero Set if the specified request is not found.
oo PushRequest — Push request packet on linked list.

PushRequest adds the current device request packet to the list of
packets to be executed by the device interrupt routine. When the
device routine finds that the request cam not be immedjately done,
it calls this routine that adds the packet to a.-list.- Since the
device is active at this point, the caller must bave turned off
interrupts before checking to see if the device was buey (otherwise
a window exists im which the device finishes before -the packédy is
put on the list). L e ’ e

Ty

S 1of L i ;-'-\! -:v_‘w
ENTRY DS:SI Pointer to DAORD head of\dgilpélliatg(mg;a request
to do). It should initialized t3 0.7
ES:BX Pointer to deviee reqeest packet . ;;/f
\\‘ 5 ‘7 K_:)
oo SortRequest — Insert request p;;tft o I}ii¥§;1}i¢ in sorted order.

A i) + A
SortRequest inserts the curreat devige request .padket into the list
of packets to be executed thg;ggilﬁ‘ interrupi routine. This
function is similar to Puph quest- except %Bé Jﬁﬂheat packet is
{ T mper .

inserted in sorted or:;}/by 2
ENTRY Ds:SI Point '

Fto do).

ES:BX " Poj
{7

v
oo DevDone — Flag 1/0O Complete.

device list (next request
It should be initialised to 0.
o device request packet.

DevDone is Jded.-Tsom the device“interrupt routine. It

reschedul _fgﬁ " pre" that owns the request to run again.
ENTRY ésEEK -fater to 1/O request block.

oo P Block —Bisck-thiy i
rocBloc ‘\gfk H;}('procesu from running

10.2. Process Synchronl"?ﬁé}@

iy

/t\\?rocBlock ‘‘sleeps’’ (suspends) the current process until some other process
7 Ti$ an intepfupt service routine) issues an appropriate ProcRun

caPMl,. Bot)} the ProcBlock and ProcRun routines are supplied

a 325$Jt ‘evert identifier.’’ Whem ProcRun is called with a

articutdr eyént identifier it reactivates all blocked

precesses giit also presented that identifier.

some sti¥ucture or memory cell. For example, processes waiting
for 1/O to be completed call ProcBlock with the address of the
I/O block. When the device driver completes the 1/O and marks
the l/O block done it calls ProcRun with that address

80 that any waiting processes can resume operation. Most
device drivers are interrupt-driven, so ProcRun is often called

' \ 7
: By cotwvention, the $2-bit ‘‘event identifier’’ is the address of
; at interrupt-time by the device interrupt handler.

=1 O e

When calling ProcBlock it is important to use the sequence:

Disable Interrupts
while (need to wait)
ProcBlock(value)

Interrupts are turned off before checking the condition

(1/0 done, resource freed, whatever) first to avoid a

deadlock by getting an imterrspt-time ProcRun call before
completing the call to ProcBlock. ProcBlock re-enables the
interrupts. Also note the ‘‘while’’ clause: it is good practice
to re-check the awaited condition and, if necessary, re-disable
interrupts and re-call ProcBlock. The coavention of wsing

an address as an ‘event idemtifier’ should prevent double use

of an identifier.

ProcBlock does its work by entering the lpecifipa”};\yﬁe
wait queues and them calling the scheduler to fun another process.

Naturally, ProcBlock cenmot be called at jntegrupt;timg. Gl
' g o) E'.,.l
When the wakeup is issued, or the timeount [e e 3N
expires, or when the task is signaled, solbs L5 el
H S o & Y
ProcBlock exits to the caller. /N\\\ S e
ENTRY AX:BX Event identifier.. - _ Hiem s B
cX Timeout interval (Ta.MSH 0 if<£o’nx;:(’timeout,
DH =0 if sleepis™interruptible
Interrupts DISABLED to prevent P:n}B1dé§/ProcRnn races.
EXIT ‘c’ Clear if even wakeup.". o Ty
‘c’ Set if wnufual wakeap. Tfi:fg
L2 Set if timeout wikeup. R
A Clear/jﬁ\gf&g5§s<v.‘ int;ir;ﬁied.
AL Awake/code, non}kggzﬁﬁj/ﬁnéjﬁal wakeup.
Interrupts enabied. NS 2R
USES AX, BX, CX, DX, FLXGS
EFFECTS SWITCHES C@NTEXT. .
’/‘
\. 7
oo ProcRun — Relecase Blocked
ProcRun is wakeup] ed processes. All

processes the particular event identifier

E i
Note thit: 3> conv Diexce, the ‘‘wakeup cause’’ was set by
ProcBloc i;;&bti__,;A' (normal awakening) so that we don't
bave to s that :val in the wakening PTDA.
e
y ENTRY AX:BX Event identifier.

BX. CX, DX, FLAGS
4 N

¥4

i -ijT AX Count of those awakened.
~/;%7AX Set according to AX.

#
10.3. Special Routines for Console and Clock Drivers
\“(‘

;o0 Cons_Input _Filter — Filter console input characters.

Checks the console imput stream for characters that need
imnediate treatment.

EXIT ZF Clear if key should be queued.
2F Set if key was ecaten.
USES FL

E ENTRY AX Input character ASCII code.

CALLED FRQM DEVHLP: DeviceHelp

10.4.

/

o DR =

Signal _SM — Signal Session Manager

Signal_SM nendn a signal to the Session Mamager that may respond
to the user’s request. The caller may specif{y a screen that
should be switched to. If the caller has mo particular
preference, screen sero should be specified.

ENTRY AL Desired screen number.
EXIT CF Set if Error sending signal to SM.
USES AL,FL

CALLED FROM DEVHLP: DeviceHelp

SchedClock — Receive Clock Tic

SchedClock is entered from the clock roptine every scheduler tick

(If clock is very fast, might make the nchednlér tick be s0 many clock

ticks to cut dowa scheduler overhead). ' - i

The caller supplies the clock “‘tick lntervtl _in mllllseasidl.
rounded down. S
For example, a 60 hs clock interrupts every\lﬁ GB-mLcroseoondl, 80
the tic interval would be 16. This va is }}eé’ﬁy the DOS7to
compute the number of ticks to connt‘ior particular interval.
The tic interval value must not chanmge once\the system.is

‘up and running.’’ Q\.- ‘&\\\ i\\ ’)//

Lo
WARNING: Depending upon the patticular B!OS ;x\edClock
may be called befort»thé\schednler Bat.@een set up.

ENTRY AL Tick inter I\\ A'aecogﬂu.‘f
EXIT NONE \ S
USES ALL F

‘J%nzlly equivalent. They
i to indicate the buffer

to the queue structure to be initialisged.
mnst be set up.
er into queue structure.

1 to insert a character onto the end of the
If the queue is full, the sero flag is set.

EBQRY DS: k S Points to the queue structmre. =~
b > The character to insert at the end of the quene.

EX'IT\\\ uet/"
) x Queue is full.

N pd Character stored successfully.
USES ™ _Flags

10.5.

- 25 -

;oo QueueRead — Read 2 character from a queue.

; QueuneRead is called to remove a character from the beginning of the
: specified quewe. If the qucue is empty, the sero flag is setl.

; ENTRY DS:BX Points to the queume structure.

; EXIT Zero Set if the queme is empty, otherwise cleared.

: AL The character read from the quene.

USES Flags

Miscellaneous Routines

ReferGlobal ScranloOk,BYTE s
/ '~
dosvartab: 4 i
DW OFFSET DosGroup:ScraloOk,1 310 e G
dosvarend: iR =Y
NDOSVAR = ((dosvarend - dosvartab) SHR 2) \ .:;':,_;"_; ,;-\Lf":‘;
. AN el o . . _:;;
oo GetDOSVar — Get address of important DOS variables P
T N \A’_;/
GetDOSVar will return the address of important D
variables. The list of variable available is- Pabject
to change with different versigns~gf-the system }
ENTRY AL idia ol vt B Skl 1 e
BX 11 AL naiméa an~array\jndex _@1_:,'0 the array desired.

CcX Expectdd | gth'izg;ti\rjiﬂ'ﬂe.-.
EXIT if CF clear, "“__ L

variable.

