286 AND 8086
COMPATIBILITY

-1
.

g
1

October 30, 1984

.__._\. _‘_,,\ : J; 4
e (i 4
i y .r_v__...\ & M
Sl
gl

:J_ ?

RN 90,

y tf.um _um“ ~
138

S

1. Overview
This document is one of a series of related documents. They are:

Microsoft Multitasking MS-DOS Product Specification OVERVIEW
Microsoft Multitasking MS-DOS Product Specification DEVICE DRIVERS
Microsoft Multitasking MS-DOS Product Specification SYSTEM CALLS
286 and 8086 Compatibility

Microsoft Multitasking MS-DOS Product Specification IN TRODUCTION

Microsoft Multitasking MS-DOS Product Specification MEMORY MANAGE-
MENT &

Microsoft Multitasking MS-DOS Product Specliﬁcqh'o‘n:DYNRMI C LINKING
Mierosoft Multitasking MS-DOS Product Spcé\:’ﬁ;?gtifin SESSIG?:Y MANAGER

R A >

’ N T e
2. Introduction Sr By \,/

The environment in which software prSductsniugst run will shortly undergo
some dramatic changes brought abgu\t\by two *néw‘ipi’oducts: the 286 CPU and
the MS-DOS 4.0 product. N PR

Wi e
The microcomputer indust’r%s ;ﬁw“

ing=away frof using machines in a one-
program-at-a-time manner, i;/(hey w\é“r":7§§§histféated desk calculators. The
time has come for the introductien of maiﬁ?ﬁnﬁ technology: multitasking, pro-
tection, and networks, as well-as br -new technology: windowing, and dynamic
linking. 7

It is beyond the scope of this
of these areas; i)]

what it is, whaf-makes 3¢9

niques must ¢hange to deal:with it. In the interest of simplification, this paper
contains so e’_i%gctual ertors; Every programmer doing work in assembly
language shoyld: iglg&ai_n/égfa;’ study the iAPX 286 Programmer’s Reference

iiinent to discuss Microsoft’s plans in each
paper will*concentrate specifically on the 286 CPU:

o~
o
T
T~

=80

The following figure illustrates the multiplicity of future Microsoft product
environments:

8086 286
Existing
Existing “Fixed”
MSDOS2& 3 “Fixed” Environment
Environment in 8086 Mode
S g
Old Programs Existing Existing
under “Fixed"” “Fixed"”
MS-DOS 4.0 Environment Environment
in 8086 Mode
. A\
Cooperative Cooperatﬁq"".i j::_-f__ \
New Programs Neup o
under Memory Management Memory agement.| .. "-7
MS-DOS 4.0 Environment T

Most readers that have.
MS-DOS 4.0 wilk g@oubte y
to make the pointtfat there
one has sufficient \irnes:

g Figure 1 incomprehensible. It js presented now
viizde a multiplicity of environments and that each
:tojustily its existence. This document concentrates op
16-986 and its two modes, “8086" and “28g."

here is intended to point out those aspects of the 286
he design and compatibility of Mmicrocomputer

-4-

have been sold. Similarly, customers will not want to purchase MS-DOS 4.0
until many programs are available for it.

Microsoft resolves this situation by providing both upward and downward
compatibility. The new environment is designed to allow old programs to run
unchanged (upwardly compatible), and to allow most programs written for the
new environment to run under the old environment (downwardly compatible).

The ultimate purpose of this paper is to allow for the creation of programs
that are fully compatible across this spectrum of environments and that also take
maximum advantage of the extra features of each envifonment.

‘.

7 v

3. 286 Compatibility P R S

The Intel 80286 (‘‘286’") processor is the nextélgerferat’i‘c‘m_ _fgll‘éi?}on for the
now familiar 8086/8088 processor. The 286 differs f}«omf:_t_ﬁe_ 8086 in tlfe following
= S

ways: f{\\ S flrgs
: : DU e b .
1) It is much faster. It is approximately three‘gm‘w_fﬁ\ster than the 8088 in the
IBM PC/XT. \\ R

~,

A T
2) It includes extra instructions suc;!{ “@higt by. éqg}xt” and “push immedi-
o

88;
ate.” }\ o
N2 caer
3) The 286 supports two %iﬂ{ modes '&@fﬁltef;:alls 288" (also known as
virtual or protected mode) and\real.” In this'"document, these modes will be
called ‘‘286" and “8086)'~4 “real” mode is intended to be 8086-
compatible. i

Note: The “‘8086" mode does no -ééa

some small byt medn

— w2

ctly emulate an 8086/8088; there are

- S S TR

[B
The 286 willibe a populay processor; Microsoft, for example, is buying a
286-based maci_x@{or each_}?{@grammer. However, it will be years before the
286 replaces the 8fS6~as the-d¥minant microprocessor. For this reason, it is of
critical importan¢e that:all s6ftware be written so that a binary copy runs on
either a 8086 or a 285-{sc=called “‘binary compatibility”). The good news is that
the’mavhines si;?'milar enough so that this is feasible. The bad news is that

t,h}{\wo progesso aré-not exactly identical, so care must be taken when design-
ing soltware. *- e

When s_tatin_g”that 8086 programs must be binary-compatible with the 286,

»

the question “‘compatible with the 286 in 8086 mode or in 286 mode?” is raised.
Ideally, the stronger condition, “compatibility with 286 mode,” should be met.
XENIX, for example, runs on the 286 only in 286 mode. MS-DOS 3.0 runs only
in *“8086" mode; future versions of MS-DOS will eventually run in both modes.
If the program is 286-mode-compatible, it is maximally flexible and, when run-
ning in 288 mode, it can take advantage of some powerful 288 features.

This document discusses the requirements for compatibility first with the
286 in 8086 mode, and then in 286 mode.

« 5=

3.1. Compatibility in 8086 mode

The 286, running in ‘‘8086-compatible” mode, closely emulates the

8086/8088 processor. Programmers should note the following exceptions and
rules:

1)

2)

3)

The 8086 generates physical memory addresses by adding the offset value to
(18 » segment-value), yielding a 20-bit result. Any overflow is ignored, so it
is possible to wrap-around to low memory by using sufficiently large segment
and offset values. For example, on a true 8086, the address FFF0:20 refer-
ences the same location as the address 0000:10. The 286, however, will gen-
erate a physical address of 10000:10, or “‘one megabyte plus18.” This is
possible because the 286 has 24 address lines whereas the 8086 has only 20.
Existing versions of MS-DOS allow programs to call the o;’?g;:&t‘ing »sys‘t‘;;igl by
calling to location 5 in the PDB area. This mechanisxﬁ\'m\ake_s implitit-uge of
“wrap-around” addressing and therefore should not be used-~"MS-DOS sup-
ports this mechanism to provide compatibi_li{;}ﬁth ancient CP/M pro-
grams. All new programs should use the “INT "'21'\’:’ﬁ-__i;1§}r.‘(ace, instead:

Some machines (such as the IBM AT) contain spacial &xdware to fix this

problem by ignoring that 21st bit whert in 8086 mode, ‘but software should
not rely upon this. Ay, el oy

Rule 1: Don't use “wrap-aro}tixii’/'éld
Use “INT 21" instead of “‘C LL 5".

When executing the instrucgsu”
PUSH SP

the 286 pushes the S value'd
value which SP wi l1-beafter-{]
doesn’t appear in im,_}%t code]

/s :

instruction, the 8086 pushes the
push. This is an unusual sequence that
should occur, the sequence:

should be used.
Rule }':})an\’t use the in\s\truction PUSH SP.

N
Shifts and rotate/coupts contained in the CL register are masked to 5 bits
on the 286; they remain 8 bits wide on the 8086. Since the masked bits are

~

all multiples of\lvﬁ;" most shifts and rotates with large counts produce the
same result with a masked-off shift count. The exceptions are the rotate-
with-carry instructions which involve 17 bits and can produce different
results with shift counts greater than 31. Since larger shift counts waste
CPU time, Microsoft software should never generate them.

4)

5)

6)

7)

8)

-8-
Rule 3: Don't use shift counts greater than 31.

The 286 can generate ‘‘the most negative number” as a quotient for the
IDIV instruction. The 8086 generates a divide error exception. (This occurs
for quotients of 8000h (word) and 080h (byte).

Rule 4: Don’t use IDIV operands that produce the most negative number.

After a divide error trap, the 286 will point at the divide instruction, includ-
ing prefixes. The registers will be unchanged. The 8086 will point after the
divide instruction and may change DX:AX or AH:AL, as appropriate.

Rule 5: Divide trap handlers should either not resume execution in the origi-
nal code stream or they will have to detect and understand 286/8086
differences. The latter can easily be done by intentionally generating a
divide trap during initialization, and examining the value on the stack.

Some 80186 processors have a mask bug such that the IDIV instruction
operates incorrectly if the divisor is negative, and it is located in memory. In
this one case, the result in the AX(AL) register is the two’s complement of

the correct answer. If the divisor is in a register, the instruction works
correctly.

Rule 6: Don't use the memory-operand form of the IDIV instruction.

The 286 has some additional instructions that are not present on the 8086.
These are:

push <immediate>
PUSHA

POPA

IMUL <immediate>
shift <reg>,<count>
INS

OUTS

ENTER

LEAVE

BOUND

Although it is tempting to use these since they fill in some obvious gaps in
the 8086 instruction set, that temptation should be avoided unless the pro-

duct is ‘‘286-only."”
Rule 7: Don't use the 286 new instructions.

The 286 has an instruction length limit of 10 bytes. This is longer than any

possible instruction unless the prefix bytes are repeated; don’t repeat prefix
bytes.

9)

10)

11)

12)

13)

o
Rule 8: Don’t use repeated (redﬁndant) prefix bytes.

Don’t use undefined opcodes in any processor at any time.
Rule 9: Never use undefined opcodes.

Don’t rely upon the speed of the CPU for timing. Various machines use
CPUs of different speeds, and naturally, the 286-as-an-8086 is much faster
than a true 8086.

Rule 10: Don't depend upon CPU speeds for any purpose.

Don'’t examine the flag register too closely. PUSHF folloxyedfb)\',POPF may
change the contents of the flag register as there are more flag bits defined in
the 286 flag word. Programs should set and test flags using-the standerd
instructions, not set or examine specific bit patterns via'i\LAHF_ or,SﬁHF—fg;j
Rule 11: Never examine or set explicit flag regis}ﬂQ'alu\es%séflgnd/teéﬁ'the
values only via flag-specific instructions. £ior, by /’
AN S
Don’t single-step an INT instruction. The 8086 fgqg'_l}%e 286 behave
differently in this respect. This should be jénjextremely Tare situation, lim-
ited to debuggers. e il

A% - - ;’1
Rule 12: Don't single-step an IN’I)iétr}{ction.‘ G

All of the existing 286 chips fﬁave ma

instruction. Specifically, if int*e;-fupts fe o

-8-

This macro uses “PUSH CS” and a short call to setup the stack so that an

IRET can be used to restore the flags. (Unfortunately, the LAHF and SAHF
instructions share the POPF bug.)

Rule 13: Don’t use POPF.

14) Programs with self-modifying code may work differently on the 288 due to
its extended prefetcher. ~

Rule 14: Don't write self-modifying code.

KERRERRERK T

The previous exceptions are all related to the design of tl’le_,286»,_itself: .The
following exception applies specifically to the IBM AT machine-which contaids a
286. Since the AT machine will be popular, the following restriction should-be

obeyed by all programs. A b o
EREERRRERE £ rs .

AT) Don’t do back-to-back IN and OUT instruetions. D&ffzifsh_%t\t-jump between
otherwise sequential I/O. This is needed”because of bus-and device timing
limitations. For example: ,\\ o ;=

Good /Ba

IN al, 30 s
JMP SHORT Ll&w;
Ll: OUT 404al

Rule AT: Don’t do bgek-tosbackd
&
To summarize, comp g¢twden the 8086/88 and the 286 in 8086
compatible” mode is rélatively easyi'@achieve, but does require some explicit
effort: =_ﬁj' 7

ey

Rule l/:,Dst’t use “‘wrap-around” addressing.

. ~
Rule 2: Dep’t: u}&_gxé;fuction PUSH SP.

77
Rule 3: Don't use ‘s‘fbif—t counts greater than 31.

Rule 4: Don’t use IDIV operands that produce the most negative number.

Rule 5: Divide trap handlers should either not resume execution in the origi-

nal code stream or they will have to detect and understand 286/8086
differences.

-9-
Rule 6: Don’t use the memory-operand form of the IDIV instruction.
Rule 7: Don’t use the new 288 instructions.
Rule 8: Don’t use repeated (redurdant) prefix bytes.
Rule 9: Never use undeﬁn.ed opcodes.
Rule 10: Don’t depend upon CPU speeds for any purpose.

Rule 11: Never examine or set explicit flag regxster valu&e, set and test the

values only via flag-specific instructions. A o A T

e 3

g .) : L o e

Rule 12: Don’t single-step an INT instruction.) WS A

;".‘ i 2 ‘,'. 2o Vr’
Rule 13: Don’t use POPF. LT Lo

e
Rule 14: Don't write self-modifying code:” .- ™\ * '3,5 A
5 \ RET i : R

Rule AT: Don't do back-to-back I 6./

3.2. Compatibility in 286 Protected N
Binary compatibility betweéjx the 808!

these mcompatlblhtles bec .
in 286 mode has cons;dgl;ﬁhly ent memory management than the 8086.
Understandmg these (ﬁ’er:ences nat eir origins can best be approached by exa-
mining the structure of the 286 ar h}tecture, specifically, how it handles memory
management and prot‘éctzen ;

,*?‘:

-10-

4. What is Memory Management?

The earliest computers had no memory management hardware. Memory
started at location 0 and ran to location N. Only one program was run at one
time; when a program was loaded into memory the operating system would relo-
cate it to wherever free memory started. This relocation was possible because
the load image (.EXE file) contained a list of all the spots in the program that
contained addresses. The linker would put the program together as if it were to
run starting at location 0; the operating system would add an offset to each listed
location so that they would indicate the program’s actual load address. This
process is called relocation.

Early computers had no memory management hardware beCau\se a relocat-
ing loader is sufficient for a single task. Exactly the same is true of the-earliest
microcomputers, the 8080 and the 8086. They don’t have relocatlon hardwhre,
but the DOS’s relocating loader allows programs to be loa%:d into memoryJ at

whatever location the DOS prefers. The difficulty co; n_we wantfte ;Fun
more than one program at one time, or “multitask. - Wehere should th }econd
program be loaded? \\-;.‘ \

An obvious idea is to relocate the second. pu_'ogram }nto l;;*emory right after
the first one. This works for a brief period, \but stn the first; pr?:gram wants to
extend its memory area and the second } the way. Although the

(b

second program can be loaded anywhe ause e’loca ons in the .EXE
file containing addresses can be liste the proy gram had started running it
can’t be moved because a running: progra . may have return addresses on the
stack and data pointers scattered thrqu out ingmory. Finding all the addresses
that need updating in an arbitrary ptogra i sible.

Another problem arxses the ﬁrst pro a,m ﬁmshes executxon before the

the first program'’s pno’r ;space -‘“‘:4 e space remammg after the second pro-
gram, it will have to W/alijllntll the se@nd program finishes execution. There is
enough free memory t ‘ﬁh the thl;&;ﬁrogram but the immovable second pro-

gram has fragmented f a Jd/m‘ge it unusable for the needs of the third
program.

The problein of movmg a runnmg program in memory without its explicit
cooperati fw was~golved /wyr the invention of memory relocation hardware. This

~,_,_—__»

hardware automatieally takes> every memory address generated by a program
and adds the\t%\ents of a,{elocatlon or displacement register to it. The resul-
tant sum is theiused a§ the true memory address. With the aid of such
hardware, the operatmg system doesn’t need a relocating loader; it just puts the
load addrus of the program in the relocation register and the program “‘thinks"
it is truly running at location 0. If the user wants to run a second program at
the same time, it can be loaded wherever there is free memory; before control is
transferred to it, the contents of the relocation register can be changed to point

to the second program. The second program then ‘“‘thinks” that it is also run-
ning at location 0.

- 11 -

In this manner the OS moves programs around in memory whenever it is
necessary. Each time, however, the OS checks that the relocation register is
loaded with the proper value before the program is run.

4.1. 8088 Memory Model Reviewed

Intel has finally released a microprocessor with relocation hardware: the
80286. Unfortunately, the 286 implements relocation hardware in a way that is
not fully compatible with the 8086.

The 8086 performs memory addressing by using a pair of 16-bit values: a
segment value and an offset value. For each memory reference the CPU multi-
plies the segment value by 16 and adds it to the offset value, producmg a 20-bit
true address. - : Y

The name ‘‘segment regxster is a misnomer; this 15 actually a Iqrm~bf a
relocation register. When Intel designed the 8086, they wantéd-to-address more
than 65K bytes of memory, but to retain a 16-bit arcﬁltgcture "'fhey did th’xs by
addressing only 65K bytes at a time, but they supplied dlsplaqemen}/feglster
allowing the program to address any particular 65K “piece of.the I megabyte of
memory. Also, the program can change the %Lue in the dlsp\lacement register
(officially, ‘‘segment register’’) at any time. “_ -

Note: This description is simplifi .\T.here itzaamrﬂ}y a,four displacement
registers instead of one, but the point, em}ﬁs vahid -

It may seem contradictory to-claim
tion while describing the 8086 {hegm nt re }
regxsters However, in a ‘“‘proper™Jnemoty,
is invisible to the program; only the opera 'ng g'stem loa.ds in the relocatlon

problem up a level. To Sve a nyigg 8086 program in physxcal memory, it is
necessary to find and ‘egf&}all the reloc

b ocgtion values that the program might even-
tually load into a se ‘ Eﬁ?ft{e\gl _t/e; though there are fewer relocation values
than there are memory dre tltg?y are impossible to find, and 8086 programs

that make use of the se t ters are just as xmmovable once they have
started rt}m‘l\mg

One \Qall %o{h%igbs here: if a program is written in such a way that it
never makesany ref nces to the segment registers, it never makes long calls,
never pushes, peps, or Joads the segment reg\sters, then the DOS can mdeed
move that program\gr_ound in memory by using the segment registers as reloca-
tion registers. Althouzh many programs make scant use of the segment registers,
those that make absolutely no use of these registers are almost nonexistent.
Unfortunately, once a program does make use of gegment registers, it then
“knows’’ about absolute addresses, and cannot be dynamically relocated.

-12 -

See Figure 2 for a pictorial representation of 8086 memory addressing. Note
that each memory location can be referenced by 4096 different “segment:offset”
pairs. Location “‘0002:0000" is the same as 0000:0020"" which is the same as
“0001:0010”, etc. This figure illustrates the reason to avoid calling these seg-
ments ‘‘segments” and the registers “segment registers.” They are not segments
at all, in the strict sense of the word, but a series of overlapping 65K “windows"
mapped onto a 1 megabyte address space. As long as a byte’s 20-bit physical
address is known, a program can generate any one of 4096 “segment:offset” pairs
to reference the byte.

»/ ' ""
0000:0000 > +— +| RS e
| o SLUPCoE L
0001:0000 o et 22 000020010 ~__~ T
[| oo I / =Y
0002:0000 o o fp 5 000070023, o 000170010~
| | RS S
0003:0000 P N oty 2 000030030, 0001:0020,
‘ || e or 0002:09010
| = N g
+—t | N L s
[: P
] St
B ’_’-,:;"‘_'?': j

igure 2. .E@Q‘Sqment" Mapping
= 5

4.2 289/quory Relocation

Th&.286, rupning i 586, mode, changes this process considerably. Note that
this procesyis bgﬁxg escribed strictly from a memory management viewpoint;
for now, some important,‘elements of the 286 design related to protection will be
omitted. Tl DA

P

The designers of the 286 wanted to add a true form of memory management
to the system, and they wanted to increase the limit of addressable memory from
1 megabyte to 16 megabytes. To accomplish this, they added a second layer of
relocation, one that is invisible to the running program. They also did not want
their new mechanism to require any new or different program instructions. They
thought this would assure upward compatibility with 8086 programs. This was
untrue, however, as will be discussed later.

-13-

When a program loads a “‘segment number” into a *segment” register on an
8086, it is actually loading a displacement value. When a program loads a “seg-
ment number” into a segment register on the 286, the 286 uses the number to
locate an entry in a master segment table, and then loads the displacement value
for the segment from that table. This is the extra level of indirection mentioned.
On the 8086, a segment register contains the displacement; on the 286, it con-
tains an index into a table that contains the true displacement.

0000:0000 > <+

0004:0000

000C:0000

0010:0000

This seems like a st@tff:fw change, but it introduces a key difference
in the semantics of the/ valkies placed.ih segment registers. Examine Figure 3 and
recall that on the 80$§i the segmeNt~¥alue represents the high order bits of the
ultimate physical addiessAll but A6-themory locations in segment N are also in
segment N+1 (or All)%g}%heﬁ@however, segment N bears no particular
relationship to segment N4<1; they-riay be far apart in physical memory. Usually
no memory Tecation in segment N is also in segment N+1.

4 \\\ A\\
S
4.3. What i3.a “Segment"?

A “‘segment™is a chunk of memory of variable size. A segmented machine
has a two-dimensional address space: one must specify which segment, and then
specify which location within that segment. Although the physical memory
assigned to different segments may overlap partially or fully so that they share
some memory locations, this is atypical. As a general rule, each memory location
has only one valid address, and it takes the form segment:offset.

Thus, 8086 so-called ‘“segments” are not segments at all according to the
above definition. On the 80886, if the 20-bit physical address of a byte is known,
the 4096 different segment:offset pairs to address the byte can be generated.

-14 -

Similarly, if the segment:offset for a byte is known, the 20-bit physical address
and/or other segment:offset pairs that address the same location can be calcu-
lated. Thus, the 8086 segment registers do not truly specify segments; they are
merely relocation registers.

The 286, on the other hand, has true segments. Each memory location
accessible to a program usually has only one segment:offset pair to address it.
When the segment:offset pair for a memory location is known, a program cannot
compute some other segment:offset pair to address the same location. This is the
critical incompatibility between the 8086 and the 286 in 286-mode. Nearly all
programs contain code that assumes a relationship between physical addresses
and “segment numbers,” a relationship that does not apply on the 286.

Some programs do this to an extreme. They reduce the 32:bit segment:offset
representation of an address into a 20-bit physical address. ;When the programs
reference the locations they use, they crack the 20-bit valuel into -one of the-4006
valid segment:offset pairs to make the reference. Other ;;‘:ogita'rh_s,as'sumé‘ the
relationship in a more subtle way; for example, a progt}n{mglt’ﬁant» tq’id"dress
memory just beyond the 65K available via the DSjrg-_giiseQ and{io 1t/,b’§' the
sequence: N S

ENENN
MOV AX,DS 2
ADD AX,4096
MOV ES,AX

This sequence also contains a built At
(segment*16)+offset, a relationshigtha_t does~got apply on the 286.

N i
4.4. Making Programs Compatible

At first glance, the answer te,
proper offset values intofhe 286 madter segment table so that the 8088 relation-
ship is maintained; seg‘;’(/lg;n"f~N+'l"‘\Q;{§§éssing the 65K which starts 16 bytes above
the 65K for segment N, 2khis would;ziideed, solve the problem, except for some
of the 286 details omitted>until noﬁf;—yﬁxe 286 only supports 8192 segments, not
65536. The two low-ordér’bits of thesF *segment number” are used as part of the
286 protection mechanis i@f}iﬁfnot actually part of the segment number.
The 286 exainples should have read N and N+4, since N+1 is the same segment
as N, at a’ different pr:?ibn\ level.

286 }74; egrpe"nts can’t be made to behave like the 8086 pseudo-
ibility mafst be obtained by writing 80868 programs so that they
behave in a ‘‘true segm_en't" manner and don’t make any assumptions about how
segment numbers are related to physical memory and each other. The term seg-
ment games is used for code sequences that understand the relationship between
8086 segment values and physical memory; a compatible program must not con-
tain any segment games.

-15-

4.4.1. Avolding Segment Games

When the DOS starts an .EXE program it sets the initial CS io the proper
value. If a program contains long-calls, the segment value in those calls is

adjusted by the DOS to its proper value, so programs rarely play segment games
with CS.

The DS and ES registers are different. Currently the DOS sets DS and ES
to point to the Program Data Block (PDB, also known as the Program Prefix
Header), 100h bytes before the first code segment. It is up to the program’s ini-
tializer routine to find a good value for DS, and this is a critical matter. It should
be thought about in terms of segments, not memory layout. Presumably a pro-

gram has a data segment, so a sequence of the form s
MOV AX,DSEGNAME P e e
MOV DS,AX O P -\

\

is good, since it makes no assumptlon about the layout of m\mory ot about?any
relationship between the value in CS and the value: a‘es\u'ed in DS.. Aﬁsequ’ence
that figures out the physxcal address of the data area: an(NQ\n coqxputgﬂi value
for DS would be wrong, since it depends upg? the 8086 segmenb-f&memory-

address mapping. e _3

An 8086-286-compatible program mu wnt in a tru&segment manner.
It makes no assumptions about the »réhuoﬁshm weén pne segment and
another or between a segment and ?/ / It ge its segye’nt values from the
linker, from the DOS, and perhaps.from }g callers. A-program never creates or
invents a segment number on its own. -This means that segment registers cannot
be used to hold arbitrary temporary values, t may only hold valid segment
numbers. Since an 8086-286-compatible “pIt may not invent segment
numbers, it cannot acce;ss/law ory direct Aince it has been given no seg-
ment numbers which reference: fh &locations. This means that if a compatible
program needs to exaﬁ'uné’ or axxg mterrupt vectors (a bad practice which

should be strictly avdm{@‘é), it m 1: so via the DOS calls; it cannot do so
directly. G

-16 -

5. 286 Protection Features

The 286 master segment table contains more than just the segment displace-
ment value. It also contains an assortment of bits and fields relating to protec-
tion. When running in 8086-compatible mode, these fields and bits are ignored,
but they carry important meaning in 286 mode.

There are three major protection-related pitfalls to avoid when writing pro-
grams that are 8086/286-compatible. They are:

e segment sizes,
e impure code segments, and
e privileged instructions.

These will be discussed in the next sections.

By
[)
6.1. Segment Sizes NGB oET L j’

et e

Recall the earlier emphasis that 8086 “segment\are not ~segment -at all,
but overlapping ‘“windows’ into physical memory (286 enfs-are-frue seg-
ments and as such each has its own specific su\ vaen X3 ‘program with 32K of
code, in 8086 mode the address A

CS:8000 7 g
is valid, although it is unclear what storetlat that l6¢ tion. In 286 mode
the “master segment table entry” (en orth ca the Iled:the “degment descriptor”),
contains a limit field. Any offset. larger th \0 (in this case) 32K used to reference
that segment will generate a machm trap nd the program will be aborted.
Furthermore, a segment offsct in"286 mode is Timited to 65K and adjusting the
segment number merely points to a new seginentAnstead of pointing further into
the existing segment. STy

This should be the 4=,.'a‘.51e$~ ,;th‘ , protection restrictions, since even in 8086
mode no program sl{ouﬂ be ad msﬁlg beyond its allocated memory. Such a
badly written program | probab yr:jn under MS-DOS 2.0 because the memory

it illegally accesses is "osﬁ_hkely/' It will sometimes run a multitasking
environment in 8086 mo -Because at memory probably belongs to some other
program. will always crash i 286 mode because the 286 protection hardware

will protect t e\yste}?A other programs from the illegal reference.

Note ‘that a“charatteristic of a true segment is that it is limited to 65K,
because it is\impossible t5 generate a larger offset. Playing with the segment
number does not- addr%s further into a segment but instead selects a different
segment. This meang-that a program that is to be 286-mode-compatible cannot
use the DOS ALLOC call to allocate more than 65K at a time because the
memory above 85K would be unreachable. If the program needs 120K it will
have to request it as two or more segments.

17 -

5.2. Impure Code Segments

An unfortunate restriction built into the 286 does not allow writable code
segments. One of the bits in the 286 segment descriptor indicates a CODE or
DATA segment. Although the DS and ES registers may contain the selector of a
CODE segment the CS register may only contain selectors of CODE segments.

A DATA segment’s descriptor has a bit to indicate read/write or read-only
access, but a CODE segment’s descriptor does not. As a consequence:
e Only valid CODE segments may be placed in CS.
e A program may not write into valid CODE segments, even if the segment
selector is copied from CS to DS or ES.)

It has been a common practice for programmers to placefa program'’s data
in the code segment, often mtermmgled with the code 1tself Then, by Toadmg
DS with the CS value one can minimize the amount of arg mg-thh the assbm-
bler and linker about segments and groups. Unfortunately thxs conyenlent ptac-
tice is no longer acceptable since it prevents progna‘m{ fromr beir mg 286-mbde—

compatible. \ s /
5.3. Privileged Instructions ,'\ \

The final consequence of 2868 mode is th‘e\exlstenxe of pnvﬂeged instructions.

A privileged instruction is one that mi \aﬁe\é‘t thg -Syst Jm as{:a whole, and not
gr
am

just the environment of the issuing pro yﬁ For- hm TeasoH, such instructions
are not obeyed when issued by a pr 286 mode: ad, they cause a trap
that will abort the program. Pri llege Jnst] ctions fall into three classes:

1) Instructions that deal with hé 98B~ protertion and memory management
hardware. None of these instructions exist op the 8088, so all existing pro-
grams conform to thj Fes{riet i 4

2) 1/O instructions: I,N agd 3 'U’P‘ “A 286-compatible program cannot issue any
I1/0 instructions. i ¥ ih

3) CLI A 286—comlsast%lg progra,m—i?annot issue the CLI instruction; it causes
a protection trap. 55 W’ istfuction restores the prev1ous value of the

interrupt flag in 80 mode_b has no eﬂ'ect on the IFLG in 286 mode. A
software INT instruction™

will § 80@6\mod7
e _,/"

- j1&-

6. What’s Next

286 MS-DOS machines (running in 8086-compatibility mode) are already in
the field. Currently, it is necessary to review all existing software for conflicts
with the 286's compatible-mode limitations.

Once the 286-as-an-8086 issues have been resolved, it is necessary.to con-
sider the restrictions required to run programs in 286 mode as well as 8086 mode.
As has been discussed, these restrictions are significant but not insurmountable.
Although many of these restrictions are caused by the 286 itself and are thus
inflexible, some of the restrictions can be eased by special support code in the
DOS and/or by the technique of dynamic linking, described in the MS-DOS

document, Microsoft Multitasking MS-DOS Product Spectﬁcatwn DYNAMIC
LINKING’ Al

As long as a program is written in a high level language, }he compxler and
linker will take care of these 286 compatibility concerns. Programs whxc\huse
special compiler features to directly reference the machinés underlymgmch ec-
ture need to ensure 286 compatibility themselves. ,\ \\/ Vs _;5!

\ &

